WELCOME
GUIDE

MASTER SERIES MICROCOMPUTER

The BBC Microcomputer
System

Master Series

WELCOME GUIDE

Part number 0443,000
Issue 1

WARNING: THIS COMPUTER MUST BE EARTHED

Important:

The wires in the mains lead for the computer are coloured in accordance with the following
code:

Green and yellow Earth
Blue Neutral
Brown Live

The moulded plug must be used with the fuse and fuse carrier firmly in place. The fuse carrier
is of the same basic colour (though not necessarily the same shade of that colour) as the
coloured insert in the base of the plug. Different manufacturers’ plugs and fuse carriers are
not interchangeable. In the event of loss of the fuse carrier, the moulded plug MUST NOT be
used. Either replace the moulded plug with another conventional plug wired as described
below, or obtain a replacement fuse carrier from an Acorn Computers authorised dealer. In

the event of the fuse blowing it should be replaced, after clearing any faults, with a 3 amp fuse
that is ASTA approved to BS1362.

If the socket outlet available is not suitable for the plug supplied, the plug should be cut off
and the appropriate plug fitted and wired as noted below. The moulded plug which was cut off
must be disposed of as 1t would be a potential shock hazard if it were to be plugged in with the
cut off end of the mains cord exposed.

As the colours of the wires may not correspond with the coloured markings identifying the
terminals 1n your plug, proceed as follows:

The wire which is coloured green and yeliow must be connected to the terminal in the plug
which is marked by the letter E, or by the safety earth symbol = or coloured green, or green
and yellow.

The wire which 1s coloured blue must be connected to the terminal which 1s marked with the
letter N, or coloured black.

The wire which is coloured brown must be connected to the terminal which is marked with
the letter L, or coloured red.

Exposure |
The computer should not be exposed to direct sunlight or moisture for long periods.

Ventilation
Do not block the ventilation slots in the case — see text for details.

Internal battery

The computer is fitted with a Lithium non-rechargeable cell which contains Lithium, either
Manganese Dioxide or Chromium Dioxide and a small quantity of Thionyl Chloride. The cell
is completely safe when correctly fitted but the following precautions should be observed if
the cell is removed from the computer’s case:

Keep away from children and animals.

Do not attempt to recharge the cell.

Do not crush, puncture, open, dismantle, or otherwise mechanically interfere with or abuse
the cell.

Do not dispose of in fire.

Do not solder.

Do not short circuit.

The cell has a very high energy level for its size and should not be carried in pockets with
keys, loose change ete. or placed in contact with metal objects.

Within this publication the term ‘BBC’ is used as an abbreviation for ‘British Broadcasting
Corporation’.

© Copyright Acorn Computers Limited 1986

Neither the whole or any part of the information contained in, or the product described in,
this manual may be adapted or reproduced in any material form except with the prior written
approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it, are subject to continuous
development and improvement. All information of a technical nature and particulars of the
product and its use (including the information and particulars in this manual) are given by
Acorn Computers in good faith. However, it is acknowledged that there may be errors or
omissions in this manual. A list of details of any amendments or revisions to this manual can
be obtained upon request from Acorn Computers Technical Enquiries. Acorn Computers
welcome comments and suggestions relating to the product and this manual.

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Cambridge Technopark
Newmarket Road
CAMBRIDGE CB5 8PD

All maintenance and service on the product must be carried out by Acorn Computers’
authorised dealers. Acorn Computers can accept no lhability whatsoever for any loss or
damage caused by service or maintenance by unauthorised personnel. This manual is
intended only to assist the reader in the use of this product, and therefore Acorn Computers
shall not be liable for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect use of the product.

Acorn 1s a trade mark of Acorn Computers Limited
VIEW and ViewSheet are trademarks of Acornsoft Limited
Econet and Tube are registered trademarks of Acorn Computers Limited

This book is part of the BBC Computer Literacy Project.
Cover design concept by Carrods Graphic Design

Written by $ACORNCES

First published 1986
Published by Acorn Computers Limited

Contents

Foreword 1
Introduction 2
1 Getting Started 3
Using the computer 5
Communicating with the computer 12
The Welcome programs 15
The Welcome utilities 22
2 The BASIC Language 34
Writing a program 34
A simple program using variables 36
Help that BBC BASIC can give you 40
Saving and loading programs 44
To program or not to program 46
Simple graphics 47
Printing text D3
Input 60
Structured programs 62
Functions 68
Loops 70
Making choices 73
Error handling 78
More about strings 79
Arrays 84
Files 86
More about graphics 89
The teletext mode 94
Sound 97
128K BASIC 99
Assembly language 99

Utility programs | 101

3 Introducing VIEW

What is word processing ?
Using VIEW

Printing from VIEW
Additional features of VIEW

4 Introducing ViewSheet

What is a spreadsheet?

Using ViewSheet

Using spreadsheets with VIEW
Other features of ViewSheet

5 Filing Systems

What is a filing system?
Standard filing systems

The Cassette Filing System

The ROM Filing System

The Disc Filing System

The Advanced Disc Filing System

6 The Editor

Selecting the Editor
Other display modes
Entering text in the workspace

7 The Terminal Emulator
8 Expanding the System

Connecting a colour monitor
Connecting a disc unit
Connecting a printer
Connecting joysticks
Connecting a Teletext Adapter
Connecting a Prestel Adapter
The user port

Connecting an IEBEE interface
Connecting a co-processor

105

105
105
125
126

128

128
130
147
148

150

150
150
151
152
153
158

164

165
167
168

174
175

176
176
177
178
178
178
179
179
179

Appendices

A Mode characteristics

B Character sets

C Operating system commands
D *FX commands

E Filing system commands
F BASIC keywords

(G VDU codes

H Plot codes

I VIEW commands

J ViewSheet commands

K Technical information

Index

181
184
192
197
2006
218
227
231
233
237
239

244

Foreword

A few years ago, the suggestion that you might have a computer in your own
home would have been greeted with disbelief. Now, home computers are an
accepted fact and more and more people are beginning to investigate their
potential.

Thankfully, the intervening years have seen many developments and today’s
microcomputers offer real processing power — making them suitable for use not
only in the home but also 1in classrooms, laboratories and our increasingly
automated offices.

BBC Microcomputer systems have been available throughout this period of
change and, unlike many comparable machines, they have provided flexibility
and expandability, enabling them to grow to meet the changing needs of their
users. It is therefore no accident that this, the latest BBC Microcomputer, is
one of the most advanced in its class, offering a large user memory and a
number of powerful standard facilities including:

— BBC BASIC;
— VIEW, a professional word-processing package;
— ViewSheet, a powerful electronic spreadsheet;

r

— The Acorn Editor, a full-screen text editor:

r

— Terminal emulation software.

Where appropriate, each of these features 1is compatible with its
implementation on earlier BBC microcomputers and, as before, your computer
i1s readily expandable by the addition of disc units, printers, high-resolution
monitors and expansion units such as the Teletext and PRESTEL adaptors.

Introduction

This book s the ‘Welcome Guide’ for your Master Series computer. It provides
an introduction to the system for all new owners — including those who have
never used a computer before.

The book covers the initial setting-up of the system, an overview of the
computer’s capabilities, information on expansion options and a series of useful
appendices, designed for quick reference to particular features. It is not
intended to be a comprehensive technical manual or a self-study guide — users
requiring this type of material should refer to the following publications, which
are availlable from dealers:

The Master Series Reference Manual — Part 1
The Master Series Reference Manual — Part 2
The VIEW Guide

The ViewSheet Guide

An Advanced Reference Manual for the Master Series computers i1s also
planned for later availability.

The first chapter describes how you should start using your computer. It also
provides some background information on the accompanying Welcome
software which, for ﬁ_rstfti\me users, will give an indication of the computer’s
power and speed.

Subsequent chapters introduce:

~ BBC BASIC;

— the VIEW word-processor;

— the ViewSheet electronic spreadsheet;
— alternatives to cassette-tape storage;
— the Editor;

— the terminal emulation sottware;

— expansions to the system.

1. Getting Started

Unpacking the equipment

Having already opened the packaging to retrieve your copy of this Welcome
Guide, you should now have in front of you:

— empty packaging;

— your computer;

— an aemnal lead;

— a welcome tape;

— a welcome disc;

— two reversible keyboard inserts;
— a VIEW reference card;

— a ViewSheet reference card;

— a guarantee card.

Put the guarantee card in a sate place, then flatten the box and keep it together
with the two polystyrene inserts so that, in the unlikely event of a fault, you
can return the machine to your supplier in safety.

If you do not have a disc unit, you will also require an ordinary cassette tape
recorder and a lead to connect it to the computer. The lead 1s not supplied with
the computer because of the wide variety of cassette recorder socket types. A
full specification of the various types of lead 1s given on page 239 and your
supplier or an Acorn dealer will be pleased to provide one suitable for your
needs.

Preparation

This section deals with getting the computer going for the first time and the
assumption 1s that you will be using an ordinary domestic colour television for
displaying output from the computer. You should refer to Chapter 8 for
instructions on how to connect a black-and-white or a colour monitor.
Connection and use of your cassette recorder 1s discussed later in this chapter,
under the heading The Welcome programs.

The computer should be placed on a flat surface, such as a desk or table top,
within easy reach of the television. Soft surfaces (such as a carpeted floor)
should be avoided as they may block the ventilation slots in the casing and
cause overheating. You will need access to mains power for the computer and
your television or monitor.

Making the connections

Take the aerial lead supplied and identify the end with the long central pin.
This connector should be fixed firmly to the socket marked ‘UHE’ on the back of
the computer:

——

oo By vy B g Ty oo Sy Ty T D e gy o Mo g T oy B oy T ey g g g g
1| Oo OOt O o © B
P10 100000014 11001 N

Unk

The other end of the aerial lead should be connected to the television set in
place of the aerial used to receive conventional television pictures.

Switching on

Plug the computer and the television into the mains and switch on the power.
Make sure that the television is switched on and that the volume is turned
right down — the computer uses its own internal speaker for generating sound.

Switch the computer on by means of the ON/OFF switch on the back:

ai Wi, W W

Ty oW, ST W N, Wy T T, I gtaYa¥, T,
judiuouitodiigbudcdbyuotudvgugduouiiuduidiouutrdboutiuututbl

"'i'“"l'“"l'""l' W ow W,

T
JUUUUH UYL

Oo OO0t 0 o6 o B

ON/OFF SWITCH

and, if everything has gone according to plan, you should be rewarded by a
‘bleep’ from the computer’s speaker and the appearance of two red indicators at

the top left of the keyboard. At this stage, the screen is likely to be blank or to
show a ‘snowstorm’ effect.

Tuning the television

The next stage 1s to tune your television so that it can receive the transmissions
from your computer, which are made on channel 36. The method of achieving
this will vary from television to television but, if your set is operated by means
of push-buttons, you are advised to select and tune one of the buttons you do

not normally use for receiving television broadcasts. In this way you will
always be able to use the computer without interfering with the other settings.

The aim of the tuning exercise is to achieve the following image as clearly and
sharply as possible — it contains white letters on a black background:

If the image appears blurred or distorted, try some further adjustments to the
tuning — you may be looking at a weaker version of the true signal. However, if
all else fails, you will have to consult your supplier or an Acorn dealer for
advice,

Using the computer

This section is intended to familiarise you with the operation of the computer at
its most basic level, i.e. using the keyboard for giving simple commands. We
start with a description of the keyboard itself and introduce the conventions we
shall use to describe key depressions in subsequent sections.

The keyboard

For descriptive purposes, the computer’s keyboard can be divided into four
separate areas:

— the main, alpha-numeric keyboard, which is laid out in the same format as
found on a conventional typewriter, with one or two additions;

— a smaller, numeric keypad, which contains keys associated with the input
of numeric data;

— a group of grey-green cursor control / editing keys;

— a row of red function keys, labelled {0 - {9.

FUNCTION KEYS CURSOR
A CONTROL/EDITING
_ — KEYS
o f1 t2 f3 f4 ts fa {7 fa fg ® BREAK t + — / ¥*
RN AsIEnne:
we lQ|W|EFR|T{xluli]ojrPlell L], 6| 5K6 |
ol Al STOlF G HT IR T[T e 1h2 I3 -
EL";'S SHIF T 4 X C V N M 'j:ﬂ ;“ : SHIFT ||oELETE|| ¢)) RETURN |
I | ‘
NUMERIC KEYPAD
ALPHANUMERIC KEYBOARD

The keyboard’s ‘touch’ is similar to most electric typewriters in that only brief,
light pressure is required to activate each key. The difference, of course, is that
the characters produced by each key depression are displayed on the screen,
rather than being printed on paper. Under normal circumstances, the response
1s immediate, although there are occasions (when the computer is busy doing
something else) when there may be a momentary delay before the characters
appear.

The keyboard also incorporates a feature known as auto-repeat — if a key is
pressed and held down, the corresponding character will be repeated, after a
short initial delay. Repetition continues until the key i1s released or until the
computer runs out of space to store the line being input (indicated by a
continuous tone from the speaker).

Throughout the remainder of this guide, we shall use

text like this

to denote input from the keyboard and output on the screen whereas symbols
like

{reTURN]

denote specific key depressions. The simultaneous depression of two keys is
indicated like this:

[stiFT]+ | BREAK]

The alpha-numeric keyboard

The alpha-numeric keyboard contains keys denoting all the letters of the
alphabet (including space), the numbers 0 to 9, various special symbols (such as
punctuation, £ % etc.) plus a number of other special-purpose keys. It also
contains, in the top left-hand corner, a row of three red indicators labelled
power, caps lock and shift lock.

The power indicator is illuminated while the computer is switched ON.

If caps lock 1s ON (i.e. 1lluminated), depression of any alphabetic key will
produce a capital (upper case) letter; depression of any keys containing two
symbols will produce the lower of the two characters.

If shift lock 1s ON , the alphabetic keys will still produce upper case letters but
depression of any key containing two symbols will produce the upper of the two
characters.

If neither caps lock nor shift lock 1s ON, depression of the alphabetic keys will
produce small (lower case) letters and the keys containing two symbols will
once again produce the lower of the two characters.

The state of the caps lock and shift lock indicators 1s controlled by the | @& |
and | 8% | keys — each depression switches the corresponding indicator ON or
OFYT, depending on its current state. Note that it 18 impossible to illuminate
both caps lock and shift lock from the keyboard — the computer uses this
simultaneous indication to denote a particular circumstance, as described
below.

The two keys have no effect while shift lock 1s ON. If shift lock 1s OFF,
(regardless of the setting of caps lock) the keys cause upper case letters

and symbols to be produced if either is held down while another key is
depressed. The keys do not affect the shift lock indicator.

A further option is provided by pressing [sniet|[+] && |. In this case, caps lock is
switched ON as usual but in the input of subsequent characters lower case
letters of the alphabet may be obtained by holding down a [shiFr] key.

Whether caps lock or shift lock (or neither) 1s ON for a particular session at the
computer i1s a matter of personal preference although the choice will also
depend upon the type of input, for example:

— Conventional text, such as an item of correspondence input to the VIEW
word-processor, consists mainly of lower case characters interspersed with a
few capital letters;

— A BASIC program consists of a mixture of special upper case words (called
keywords) interspersed with other, often lower case words (called variable
names).

| ctaL | (which is an abbreviation for control) has no effect on its own but it may
be used 1n conjunction with other keys on the keyboard to invoke a number of
special effects. For example, | ctrL |+ G causes the computer to emit a short
bleep; [ctrL |+ L clears the display screen. Other examples are given in the
remainder of this guide and a summary of the various effects is given in
Appendix G.

1aB | normally acts like a space-bar depression although it has a special
significance when using VIEW, ViewSheet or the Editor, as described later in
this guide.

[reTurn] is used to indicate that a particular line of input is complete — prior to
the depression of |return), |peLete] may be used to erase the most recent
character(s) you have typed.

[escare| and [sreak], as their names imply, are provided to enable you to
interrupt what the computer is doing, although [escare] also has a special
significance when using VIEW, ViewSheet and the Editor. |escare| should be
considered to be a ‘polite request’, which normally stops the computer without
any side-effects, whereas [Break] is a definite command which stops the
computer at all costs.

Depression of |Break] alone is sometimes referred to as a soft break because it
has the effect of resetting the computer to the condition it was in at the start of
the current session (BASIC, VIEW, ViewSheet, Editor etc.). A hard break is
achieved by pressing [ctrL |+[sreak]; this resets the computer so that it
assumes the state in which it would normally be immediately after switching
on.

[sniFt]+-|BrEAK] has a special significance if you are using a disc unit and further
details are given In the section entitled The Welcome programs, on page 15.

The potentially hazardous side-effects of accidental depression of |Break] can be
avoided by turning the break key lock (see illustration) clockwise through 90
degrees using a suitable flat-bladed screwdriver. Normal operation is restored
by returning the screwhead to its original position.

The numeric keypad

The numeric keypad 1s provided as a convenient means of entering large
quantities of numeric data — it contains:

— The digits 0 - 9;

— Symbols denoting the four arithmetic operations (* being used for
multiplication, / for division);

— Full stop (decimal point) and comma;

~ Separate [return] and |peLeTe] keys;
— The # symbol.

Each key replicates the function of the corresponding key in the main
keyboard, with the added advantage that +, * and # may be obtained directly
(i.e. without the use of [shiT]).

The cursor control / editing keys

Under normal circumstances, the screen will show a flashing symbol known as
the cursor; it indicates the position at which the next character to be typed will
be displayed. The cursor moves one character position to the right for each
normal key depression, one character position to the left for each depression of
JoeLeTe] and to the start of a new line for each depression of [return].

The four arrowed cursor control keys may be used to move the cursor around

the screen and it will be seen from later chapters that this facility is
fundamental to the use of VIEW, ViewSheet and the Editor.

has a special function in each of the above but it is also used in
conjunction with the cursor control keys for cursor editing — a technique
mainly used during the input and correction of programs and which is
described on page 40.

The function keys f0 - 9

In certain applications, such as VIEW, ViewSheet and the Editor, it 1is
convenient to make use of a single key depression to denote a particular action
and the 10 red function keys across the top of the main keyboard are provided
for this purpose. Each key may be used on its own, in conjunction with [sHiFT],
[ctrL | or, indeed, [sHIFT}+] cTrL |, giving a total of 40 additional keyboard

functions. In these cases, it 1s usual to define the function invoked by each type
of depression on a special keyboard insert, such as those supplied with your
computer.

In addition, the function keys may be ‘programmed’ to produce a sequence of
one or more characters, thereby minimising the number of keystrokes required
to carry out frequently-used tasks. A brief description of function key
programming is given in the next section and full instructions (including the
way in which the cursor control keys, and the numeric keypad can be
programmed) are contained in the Reference Manual.

The screen display

This section introduces the various screen displays that are available and gives
you an opportunity to try out your newly-acquired keyboard skills. For the time
being, however, do not worry about the meaning of what you are asked to type
but concentrate on pressing the correct keys. If you type a line incorrectly (i.e.
you press |return] before you spot the mistake), the computer will respond with
a simple message, such as:

Mistake
or
No such variable

Ignore these messages for the time being and merely type the line in again;
their significance is explained in later chapters. One of the most likely mistakes
at this stage is to type the letter O instead of the number 0, which are denoted
by 0 and @ respectively. If things appear to have gone irretrievably wrong, try
pressing |escare] and, if that has no effect, press | sreax].

The computer is able to display output on the screen in a variety of different
modes, each of which has its own characteristics, in terms of the number and
length of its lines of text, the size and shape of the characters displayed and its
ability to present graphics (points, lines and areas of colour). Each screen
mode is identified by a number, which may be in the range 0 — 7 or 128 — 135.
These two sets of modes are identical in terms of what is actually displayed on
the screen; they differ only in the size and location of the area of memory set
aside for storing the current content of the screen. Modes 0 — 7 are identical to
the eight modes available on the BBC Model B microcomputer; modes 128 —
135 are referred to as the shadow screen modes (identical to those available on
the BBC Model B+ microcomputer) which provide the maximum amount of
user memory for a given type of display. We shall use modes 128 — 135 in all the
examples in this guide.

You have a means of instructing the computer to start up in any of the

10

available modes (see page 25) but the standard setting i1s mode 7, which
provides:

— 25 lines of text, each 40 characters in length;
— the teletext character set (see below);
— limited graphics in the form of small blocks of colour.

The > symbol immediately to the left of the flashing cursor is an example of a
prompt and its appearance indicates that the computer i1s waiting for you to
type something. Try typing these lines to see the effect; in each case the
computer will respond by displaying the characters inside the quotation marks:

PRINT"White on black''|reTurn]
PRINT"[stirT]#+[#]Red on black''[reTurn]

In mode 135, [swirr]+[# Jand [ctrL |+[£z] etc. generate what are known as

teletext control codes which affect the way in which the remaining
characters on a particular line are displayed. Examples of this type of screen
display can be seen on pages from either the BBC’s CEEFAX or the IBA’s
Oracle services and further information 1s provided in Chapter 2 of this guide
and in the Reference Manual.

If you type:

MODE128 |retunn]

the screen will clear and a smaller prompt will appear in the top left-hand
corner.

You have now selected mode 128 which provides:

— 32 lines of text, each 80 characters in length;
— the full ASCII character set (see below);
— high-resolution, 2-colour graphics.

Now type:

PRINT"White on black"[reTurn]

COLOURQA: COLOURT29:PRINT"Black on wh1ite'"[return]
MOVE 600@,500:PLOT149,750,500]|reTurN]

MOVE 60@,500:PLOT157,700@,500|reTurN]

You may like to try repeating the same sequence of examples in each of modes
129, 130, 132 and 133 — the remaining modes which offer a graphics facility.
Notice the effect that each change of mode has on the size and shape of each
character you type, the colours produced and the ‘crispness’ of the circle.

Modes 131 and 134 offer a text-only display consisting of 25 lines of 80 and 40
columns respectively.

The welcome software contains a demonstration of the capabilities of the

11

various screen modes and Appendix A, on page 181 gives a full specification of
the characteristics of each mode.

A note on character sets

Computers use simple codes to represent characters which are stored in
memory or displayed on the screen and your computer offers two,
internationally accepted coding conventions, namely teletext and ASCII.
(ASCII is an abbreviation for American Standard Code for Information
Interchange.) The teletext set 1s available only in modes 7 and 135 and the
ASCII set is available in all others.

It 1s the ASCII character set which is etched into the keytops on the computer’s
keyboard and in any mode other than 7 or 135 a representation of the
corresponding character will be displayed on the screen. The Teletext character
set 1s identical for all the letters of the alphabet, the digits 0 — 9 and all except
eight of the special symbols:

ASCII symbol: I U R (R R

Teletext symbol: € 'z * + L U + =+

In addition, the teletext character set contains the elementary graphics
characters and teletext control codes mentioned on page 11, full details of
which are given in Appendix B.

Matters are made somewhat more complicated by the fact that your computer
allows the ASCII character set to be redefined and extended, thereby enabling
foreign, italic and a variety of user-defined characters to be displayed. The
example below redefines the (@ key so that it displays the mathematical symbol
used to denote pi:

MODE 134 |reTurn]
vDU23,64,0,2,124 ,168,48 ,40 ,40 ,0freTurn]

A utility to help you design your own characters is provided as part of the
Welcome software.

Communicating with the computer

You have now spent a short time typing things at the computer’s keyboard and
witnessing the result. Initially, it does not seem particularly surprising that
when you press, say, A, the computer displays an A on the screen — this is
exactly what you would expect. In fact, one part of the computer, called the
machine operating system (MOS) works incredibly hard to produce this
simple result and it 1s in action for every instant that the computer is switched
on. Even when the computer appears to be idle, waiting for you to type

12

something at the keyboard, the MOS i1s busy maintaining the screen display
and carrying out other vital functions.

The MOS is also responsible for calling up each of the other systems provided in
your computer t.e. VIEW, ViewSheet etc. Only one system may be operational
at a given time and, unless you tell it otherwise, the MOS will automatically
select the BASIC language system for you when the computer is switched on —
hence the appearance of the word BASIC in the screen display shown on page
5. Thereafter, all input from the keyboard is collected by the MOS and passed
to the system you have chosen — you have (perhaps without realising it) been
typing BASIC instructions in the previous section. Any messages you received,
such as Mistake or Missing ", were produced by the BASIC system to indicate
that it was unable to make sense of the line it received from the MOS. Needless
to say, it was the MOS which actually did the job of putting the characters on
the screen.

There are, however, occasions when it it neccessary to communicate directly
with the MOS, regardless of the system currently in use. These operating
system commands have an asterisk (*) as their first character and this
symbol 1s used to tell the MOS that it must deal with the remainder of the line
itsell.

For example, if you type

*T IME|ReTurN]

the MOS will respond with the day, date and time from its internal clock (which
1s maintained by battery when the computer is switched off). See the section
headed The Welcome utilities on page 22 for instructions on how to reset the
clock if it 1s wrong.

*ROMS | reTusn]

will cause the MOS to list the various systems and languages resident in the
computer’s read-only memory (ROM) sockets. These will include VIEW,
ViewSheet and the Editor.

Now try typing:

*WORD [reTunn]

Immediately, the MOS clears the screen and selects the VIEW word-processor.
Similarly, typing:

*SHEET|ReTurN]

tells the MOS to select ViewSheet. The BASIC language system can be
reinstated by typing:

*BASIC|ReTuRN]

13

The *KEY command tells the MOS to associate a sequence of characters with a
particular function key. For example, if you type:

*KEY@functionreturn]

each subsequent depression of will produce the characters function, so
you could abbreviate the input of the phrase function keys have lots of
furictions by typing:

keys have lots of | f |s

In this somewhat trivial example, the line remains incomplete (i.e. you can add
further characters to 1it, delete characters from it etc.) exactly as if the
characters were being typed one at a time from the keyboard. You can,
however, include a special sequence (M) to simulate depression of [rReturn] so
that a function key depression becomes equivalent to one or more complete
lines. There is also no reason why the string associated with a particular
function key should not itself contain operating system commands, for
example:

*KEY 1*TIME | MXROMS ! M|reTurn]

This causes each depression of to produce the time and date followed by a
listing of the computer’s ROM contents.

Other operating system commands can be used to tell the MOS to change the
way 1t behaves. You will recall, for example, that pressing and holding down a
key on the keyboard invokes the auto-repeat facility in which the character is
repeated after an initial delay. Both the initial delay and the speed at which the
character is repeated are controlled by the MOS and they can be changed if
required. Remind yourself of the normal settings by producing a sequence of
characters using auto-repeat (and [rerurn]), then type:

*FX12,1|reTurn]

and repeat the sequence. Now see what happens if you try to produce the same
sequence after typing:

*FX11,0]|reTurn]

In other words, *FX12 enables you to adjust the speed at which characters are
repeated and *FX11 enables you to adjust the delay before auto-repeat
commences. (*FX11,0 actually switches the auto-repeat facility off altogether).
You can restore both the speed and delay to their initial settings by typing:

*FX12 ,@]reTurn]

A summary of these, and the host of other special effects is given in Appendix
D.

14

Finally, the MOS also responds directly to control key depressions, such as
| ctaL |+ G and [ctrL]+ L mentioned above. These two examples are complete in
themselves but others, such as [crL [+ S (which can be used to change the
screen colours in modes 0 — 6 and modes 128 — 134) need further keystrokes to
achieve their effect. Select, say, mode 3 and press:

| ctRL |+ S followed by @ 4 0 0 0

The five additional characters do not appear on the screen but the MOS
interprets them as a request to change the background colour (0) to blue (4).
Similarly:

| ctrL |+ S followed by 7 1 0 0 @

changes the text colour (7) to red (1).

| ctre |+ T, or a subsequent change of mode resets the screen to its default
values of white text on a black background.

The Welcome programs

This section describes how to connect your tape recorder and how to run the
programs and utilities provided on the Welcome tape and its disc equivalent.

Connecting a tape recorder

If you intend to use a disc unit from the outset, you should ignore these
instructions and refer instead to the section entitled Connecting a disc unit
below. Ideally, your tape recorder should be mains powered but if it is battery
powered make sure that the batteries are in good condition — you will
encounter difficulties if the recorder is not operating at the correct speed.

Your tape recorder lead will be one of those described in Appendix K. The single
plug corresponding to the end shown under the heading COMPUTER should be
inserted into the socket marked ‘cassette’ on the back of the computer:

Ty T, W yT ¥ LML

a¥, Wl g W
Judtuvdduiudygdybuoddusuuduicyduuiiiguiiddiuoiigbopisgusubutiubutdtiut

1| Oo OO0 = O o ©]
| THAAMAGORAR OGDRNARAT DRARGARAAAD AOGARARARD

CASSETTE

Plug(s) shown under the heading ‘TAPE RECORDER’ should be inserted into
the corresponding sockets on your tape recorder.

15

Motor control

It 1s normally desirable to allow the computer to start and stop the tape
recorder automatically but this facility is not available with all combinations of
tape recorders and leads. The procedure outlined below will enable you to
determine whether ‘motor control’ is available with your equipment.

1. Ensure that the equipment is connected to the mains and switched on. If you
have just been using the computer, execute a hard break ([ctaL |+[Break]) to
reset it to its initial state.

2. Place the Welcome tape in the recorder such that side 1 is ready to be played.

3. Now press the ‘Fast Forward’ button (variously labelled ‘FE’, ‘FF FWD’ or
‘>>’) on the tape recorder and observe the effect:

— If the tape winds forward, stop the tape recorder and fully rewind the tape —
your equipment does not provide the motor control facility.

— If nothing happens, leave the tape recorder on ‘Fast Forward’, type:

*MOTOR 1[return]

and observe the effect:

— If the tape now begins to wind forward, stop the recorder, fully rewind the
tape and (only when the tape is rewound) type:

*MOTOR D[return]

Your equipment does provide the motor control facility.

— If nothing happens, disconnect the lead from the tape recorder and check
that 1t 1s operating correctly on its own. Then reconnect the lead carefully
and repeat the procedure — if it fails again you should consult your
supplier or an Acorn dealer. |

Tone and volume settings

In order to be reasonably sure of being able to load the programs from the
Welcome tape successfully, you should first adjust the tone and volume settings
on your tape recorder. For the majority of modern tape recorders, you should
select maximum ‘treble response’ (i.e. turn the tone control to its maximum)
and set the volume at about one third of its maximum.

Programs recorded on cassette tape consist of a series of rather unpleasant
sounds and, in many tape recorders, this sound is played back through the
internal speaker at the same time as it is transmitted along the connecting
lead. If possible, therefore, you should also switch the tape recorder’s internal
speaker OFF. If the speaker cannot be switched off, an equivalent effect can

16

often be achieved by inserting a jack plug into the socket marked ‘ear’, if it is
not already occupied.

You must not turn the volume control down unless you can be absolutely
certain that it affects ONLY the speaker and, if all else fails, you will have to
muffle the speaker with some suitable material.

Connecting a disc unit

Chapter 8 contains instructions for connecting a variety of disc units to your
computer. In order to run the Welcome programs and utilities from the disc
provided, your disc unit must accept either 40- or 80-track 5.25in flexible
(floppy) discs.

The disc unit will have a flat connecting cable and connector which should be
inserted into the socket marked ‘disc drive’ on the front underside of the
computer:

AUXILIARY
POWER DISC
OUTPUT DRIVE

@ nnnnNn NANT
OX
J JUUuL

Some disc units are mains powered (in which case they will have a mains power
lead and a separate ON/OFF switch); other units draw their power from the
computer itself and the power cable should be connected to the auxiliary power
output socket shown in the illustration.

17

Running the Welcome programs

All the Welcome programs are written in BBC BASIC and in this section you
will encounter the keyword CHAIN, which 1s used to load and run BASIC
programs from either tape or disc. However, whilst your computer is fitted with
the necessary circuitry to enable it to control the operation of a disc unit, it has
been set up (initially at least) to handle only input from a tape recorder, under
the control of what is called the Cassette Filing System (CFS). Instructions
below relating specifically to the CFS are indicated by this symbol:

O O
—\

Disc users, on the other hand, will need the Advanced Disc Filing System
(ADFS) and the necessary instructions are indicated by:

O
0

O O Looad the Welcome cassette into the recorder so that side 1 can be
) played back. Reset the tape counter, then type:

CHAIN"'WELCOME" [ReTurn]

and press the PLAY button on the recorder.
The screen will first show the message:
Searching

then:

Loading WELCOME

When program WELCOME has been loaded, a short bleep will be

emitted from the computer’s speaker, the screen will fill with a title
page and you will be asked the question:

Do you have motor control ? (Y/N)

If your equipment provides motor control, press Y and leave the PLAY
button on the recorder depressed — the computer will switch the motor
on and off automatically. If yvour equipment does not provide motor
control, press N and be prepared to press the STOP button on the
recorder when told to do so throughout the Welcome sequence.

A bieep accompanied by one of the messages:

?Block , ?Data or Rewind tape

18

indicates a failure to read the contents of the tape correctly and vou
should start again, using a ditfferent volume setting.

Remove the disc from its protective jacket and insert it into the drive
O | labelled (or specified in the disc drive’s documentation) as drive 0.
Leave the disc drive latch open and then type:

*ADFS[RreTuRN]

Wait for the disc drive to whirr and for the lamp adjacent to drive 0 to
come on, then close the latch. There will be a short delay while the
ADFS retrieves essential information from the disc and, when the >
prompt reappears, type:

CHAIN"WELCOME4D ' |reTurN] (for a 40-track disc unit)

or.

CHAIN"WELCOME8Q' [return] (for an 80-track disc unit)

This will bring up the title page; the remaining programs will be loaded
from the disc automatically.

About the Welcome programs

o o | As each of the Welcome programs is loaded, make a note of the tape

LA} counter value in the blank, rectangular box adjacent to each program
name below. This will enable you to locate a particular program
quickly and easily if you wish to look at it again.

MODES | O O |loading time 2 minutes

MODES cycles through the 8 basic screen modes and displays examples of the
text, the available colours and, where possible the basic graphics capability.

CASTLE | O O |loading time 1 minute

CASTLE illustrates the computer’s ability to produce high-speed, multi-colour
graphics. It uses a variety of shapes (squares, rectangles, circles and triangles)
filled with either plain colours or patterns.

CLOWN | i O O |loading time 1 minute

CLOWN is a similar illustration which incorporates other shapes.

SHAPES [O O |loading time 1 minute

SHAPES 1s a sequence of examples showing the basic shapes which can be
produced directly using built-in graphics commands. For the purposes of the
demonstration, each shape is drawn as a solid figure, each superimposed upon
the previous one, but it is also possible to produce outline shapes using solid or
broken lines.

19

ey

CLOUD | O O lloading time 1 minute

CLOUD is a simple animated sequence in which various parts of a graphic
image are moved about the screen. The smootheness of movement is achieved
by switching between the normal and the shadow screens. Changes of colour
are used to produce a pleasing effect.

PATTERNS, O O |loading time 1 minute

PATTERNS produces a sequence of complex figures, facinating to watch in
themselves, but which are then used to illustrate the speed with which the
computer can flood-fill an area with either a plain colour or a more complex
pattern.

KEYBOARD| O 0O J loading time 2 minutes
—

KEYBOARD is an program designed to help you to familiarise yourself with
the operation of the keyboard. You will be shown a character which you must
find and press; the computer will time you and display your score out of ten in
each of five different tests, together with the average time that you take to find
each key.

TURTLE _J O O |loading time 1 minute

—

TURTLE is a program which allows you to control the movement of a screen
pointer (the turtle) using a simple set of commands. The turtle normally leaves
a trail in the form of a simple line and this feature can be used to create a
number of interesting graphic effects. In fact, the nine red function keys are

preprogrammed with sequences of commands to produce different shapes and
patterns.

The commands which may be given to the turtle are shown below — you may
also use the abbreviation given in brackets.

FORWARD (FD) n moves the turtle n steps in the direction in
which 1t is pointing.

BACK (BK) n moves the turtle n steps backwards.

RIGHT (RT) o turns the turtle right through a degrees.

LEFT (LT) a turns the turtle left through a degrees.

HOME returns the turtle to its starting position.

PENUP (PU) stops the turtle leaving a trail.

PENDOWN (PD) makes the turtle leave a trail.

20

PENCOLOUR (PC) ¢ changes the colour of the turtle’s trail:

PENCOLOUR 0 leaves a blue trail;
PENCOLOUR 1 leaves a red trail:
PENCOLOUR 2 leaves a yellow trail;
PENCOLOUR 3 leaves a white trail.

HIDETURTLE (HT) makes the turtle invisible.

SHOWTURTLE (ST) restores the turtle to the screen.

CLEAN (CL) wipes the screen clean.

CLEARTEXT (CT) clears the area where commands appear.
REPEAT n|....] enables a sequence of commands to be

repeated n times. For example:
REPEAT 4 [FORWARD 100 RIGHT 90]

will draw the four sides of a square.

[ctaL | may be used to interrupt a sequence of commands.

ADVENTURE | O O |loading time 3 minutes
—

ADVENTURE i1s an adventure game in which you must explore a world

revealed to you by the computer — the aim is to find the hidden treasure.

The computer will describe your surroundings, possible routes you may take
and what objects (if any) are to hand. You give instructions using simple
commands of one or two words. For example, to ‘go north’, you could type
GO NORTH or simply NORTH. (In fact, NORTH, SOUTH, EAST, WEST, UP and
DOWN can also be abbreviated to N, S, E, W, U and D respectively.) You can
collect any objects you come across (such as a key) by typing TAKE KEY or
GET KEY.

IF you type INVENTORY (or simply INV) yvou will be given a list of the objects
which you are carrying.

Do not be afraid to experiment with a wide range of words — you may be
surprised to learn how many commands the program can understand !

AQUA O O |loading time 2 minutes
—

Aqua attack is an arcade-style game in which you score points by destroying
various objects in an under sea scene. You control the movement of the black
submarine using either the keyboard or a joystick. (See Chapter 6 for
instructions for connecting joysticks).

Points are scored for each direct hit on an object but some require several hits
before they are destroyed. If you hit the rapidly-moving ‘sea-snake’, it splits

21

into two segments. You lose one of your three lives if you steer your submarine
into any object or if you are caught by either the octopus or a falling mine !

AQUA is the last of the Welcome programs although a number of other items
are contained on the second side of the cassette. At this stage, however, you
may wish to see some or all of the programs again. First reset the computer
with | ctrL |+[BRreak]|, then proceed as follows:

o o| You wil need to rewind the tape either to the start or to the

L appropriate tape counter setting. If your equipment provides motor
control, you will be unable to rewind the tape until you switch the
motor ON by typing:

*MOTOR 1|return]

When the tape 1s correctly positioned, execute the program of your
choice by typing:

CHAIN''program name''|rerurn]

With the disc correctly loaded in the disc unit, merely type:

O

0 CHAIN"program name''|RETURN]

The Welcome utilities

The Welcome disc and side 2 of the Welcome cassette contain a number of
utility programs. Three utilities, PANEL and TIMPAINT and DBASE are
described here, the remainder, which provide facilities which you may wish to

incorporate into your own BASIC programs, are described at the end of
Chapter 2.

The procedure for loading each utility is given under the appropriate section
heading.

o o | lfyouhave just finished running the Welcome programs you will need

1) to wind the tape forward (using *MOTOR 1 if necessary), remove the
cassette and replace it so that side 2 is ready to be played. Remember to
reset the tape counter.

You may use the commands described below to run any of the Welcome
O | utilities individually. However, you may call up a menu system which
provides access to all the utility programs by typing:

*ADFS|reTunn]
CHAIN"UTILITIES" |reTurN]

You should refer to Chapter 2 for a description of the Programming
utilities and to Chapter 5 for a description of the Advanced Disc Filing
System utilities.

22

PANEL!] O O |loading time 2 minutes

PANEL is the first of the utilities provided with your computer — it is described
here because 1t enables you to carry out such functions as resetting the date
and time and, if necessary, reconfiguring your machine so that it selects
something other than the Cassette Filing System when it is switched on.

PANEL differs from the other welcome and utility programs in that it is
written, not in BASIC, but 1n the computer’s own machine code. CHAIN,
which 1s the command for loading and running BASIC programs, is therefore
inappropriate and PANEL is executed using the command:

*RUN PANEL[reTurn]

*RUN PANEL may be abbreviated to *PANEL if you are using a disc
O system. Since PANEL is not one of the standard commands recognised
U by the MOS, this line causes the computer to search the disc for a
machine code program with the name PANEL.

Once loaded, PANEL replaces the screen with a control panel consisting of a
series of boxes showing the settings which are selected when the computer is
switched on. These settings are held in a special, battery-backed memory
referred to as the CMOS RAM and they are maintained even when the

computer i1s switched off.

o o | If your equipment does not provide motor control, stop the tape

] recorder as soon as the control panel appears. Note the reading of the
tape counter — you will need it when you come to examine the
remaining utilities.

WARNING: READ THE FOLLOWING INSTRUCTIONS FULLY BEFORE
ATTEMPTING TO USE THE CONTROL PANEL. FAILURE TO DO SO MAY
RECONFIGURE YOUR MACHINE INTO A STATE FROM WHICH YOU
MAY FIND IT DIFFICULT TO RECOVER.

23

The control panel layout is shown below.

5 De
Flllng Sgsten

D Cassette
i

Ecnnet Econet
File Server Printer

8.254 « 233

ool Pancl|

HIt Fi ++4+ to alter

© &

The content of each of the boxes may be changed and the box to which changes
will be made at any one time is outlined in blue; all the remaining boxes will
have a white outline. Initially, the box marked QUIT (1) is the one so marked
and depression of Jescape] while QUIT is highlighted terminates execution of
the control panel program.

Movement between the various boxes is achieved using the four cursor control
keys («<—, —, 17, |) and any necessary changes are made by using the same
keys in conjunction with simultaneous depression of either of the keys.

The meaning of the various symbols shown in the control panel, a list of the
possible options and a discussion of their functions are given below. The ‘default
settings’ are those incorporated into the machine prior to its purchase.

(1) QUIT
This box provides a means of leaving the control panel, as descibed above.
(2) Vertical screen alignment

On some domestic televisions and (fewer) monitors, the top line of the screen
display is either totally or partially lost and selection of this option allows you to
shift the whole screen display up or down as necessary.

24

Default setting: no vertical screen shift
(3) Mode select

The computer can be configured to start up in any of the available modes (0 — 7
or 128 — 135).

Default setting: mode 7.
(4) Scroll-protect option

Under normal circumstances, the cursor will automatically wrap around to
the start of the next screen line whenever a particular line becomes full. If the
line happens to be the bottom line on the screen, the wrap around also causes
the screen to be scrolled up by one line (i.e. the top line disappears from view
and a new, blank line 1s created at the bottom.

This feature does not normally cause problems but one side-effect is that it is
impossible to type a character in the last position on the last line without
invoking the scroll. This option allows you to overcome this minor irritation by
effectively creating an 81st character position (or a 41st, depending on the
current mode) on the last screen line — this character position 1s used to hold the
cursor on the last line if a character is placed in the 80th (or 40th) position.

Default setting: no scroll-protect.
(5) Boot option

Disc and network users have the option of selecting the auto-boot option, which
enables a predefined sequence of actions to be carried out whenever
[stiFt]+ [sreak] 1s depressed. Normally, this involves executing the instructions
contained 1n the file with the special name !BOOT, held either on the disc or in
the user’s own area of the network file server. This option has no effect for
users of the Cassette Filing System.

Default setting: auto-boot OFF.
(6) Drive control parameters

This option allows the user to make adjustments to the way in which the disc
drive(s) connected to the computer are controlled. The value i1s a decimal
representation of a sequence of binary digits (bits), each of which 1s used to
indicate a particular setting, further details of which will be found in the
technical documentation accompanying your disc unit. The default setting is
appropriate to most commonly-available disc units.

Default setting: 3

(7) Disc-type select

25

Your computer is capable of controlling the operation of most industry-
standard disc drives, i.e.:

— 5.251n flexible (‘floppy’) disc drives;
— 3.51n or 3in mini-disc drives;
— ‘Winchester’ (hard) disc drives.

In this option, the top symbol denotes 5.25in flexible disc, 3.25in or 3in
mini-disc drive(s); the lower symbol denotes a Winchester drive.

In addition, each symbol contains a small indicator which may be switched ON
or OFF to indicate whether the Advanced Disc Filing System (see Chapter 5)
will carry out an automatic start-up sequence.

Default setting: 5.25in flexible disc, 3.25in or 3in mini-disc drive(s). No
automatic mitialisation.

(8) Date

The CMOS RAM holds and maintains a perpetual calendar which caters for all
dates (including leap years) until the year 2000. This option allows the day,
month and year numbers held in the RAM to be altered if required.

Default setting: not applicable.
(9) Day and time

In addition to the day month and year numbers, the CMOS RAM holds a
representation of the actual day and the current time. Both can be altered by
selecting this option.

Default setting: not applicable.
(10) Keyboard status

This option allows the power-on setting of the caps lock and shift lock indicators
to be defined. It also allows the auto-repeat rate and the initial auto-repeat
delay to be specified.

Default settings: auto-repeat rate one tenth of a second;
caps lock ON;
auto-repeat delay half a second.

(11) Default language

In its standard form, your computer comes equipped with the BASIC language,
the VIEW word-processor, the ViewSheet spreadsheet package and the Acorn
Editor. It is possible (using the various internal ROM sockets and the two
external cartridge ROM sockets) to install other language systems, such as
PASCAL, COMAL, LLOGO etc. This option allows any of the available language
systems, VIEW, ViewSheet or the Editor to be selected when the computer is
switched on.

26

Default setting: the BASIC language.
(12) Default filing system

In its standard form, your computer comes equipped with four different filing
systems:

— The Cassette Filing System (CFS);
— The ROM Filing system (RFS);
— The Disc Filing System (DFS) — supplied for compatibility with BBC Model B

microcomputers;
— The Advanced Disc Filing System (ADFS).

and this option allows any of the filing systems to be selected when the
computer is switched on.

The ROM Filing System must be selected if you wish to use software supplied
on cartridge ROMs (1.e. which plug into either of the two external cartridge
ROM sockets). The Disc Filing System i1s fitted in order to provide compatibility
with previous versions of the BBC Microcomputer (i.e. Models B and B+).

Default setting: Cassette Filing System
(13) RS423 baud rate

The RS423 serial interface is used, amongst other things, for connecting serial
printers and 1t is necessary to specify the rate at which data is to be
transmitted. This option defines the transmission (baud) rate which will be
selected when the computer 1s switched on.

Default setting: 1200 baud
(14) RS423 data format

As with the Drive control parameters described above, this value is a decimal
representation of a sequence of bits used to define the format of data
transmitted or received via the RS423 serial interface. Users wishing to make
extensive use of the RS423 interface should consult the Reference Manual for
further information on this setting.

Default setting: 4
(15) Printer options

A variety of different types of printer may be connected to the computer, some
ol which produce automatic line-feeds, others of which do not. Those which do
produce an automatic line-feed will print in double spacing (i.e. with a blank
line between each printed line) unless the printer is instructed to ignore the
line-feed character generated by the computer. This option allows you to choose
whether line-feeds (or, indeed, any other character) will be ignored.

27

This option also allows you to specily the type of printer currently in use, 1.e.
parallel, serial or (in the appropriate environment) a network printer. If you do
not have a printer connected to the computer, you may also select the printer
sink option, which ensures that programs will not fail if they attempt to direct
output to a printer which is not connected or not switched on.

Default setting: ignore line-feeds; parallel printer type.
(16) Sound option

The computer produces sounds through its internal speaker and this option
allows you to select either full or half volume for standard tones. Selecting half
volume has the additional effect of suppressing the sounds generated when the
computer 1s switched on.

Default setting: full volume.
(17) Co-processor options

Chapter 8 of this guide describes a number of co-processor options which
provide your computer with increased power and versatility. This option allows
you to specify if a co-processor is to be selected when the computer is switched
on.

The large symbol denotes a co-processor installed inside the computer’s casing
(1.e. an internal co-processor) and the smaller symbol to its right denotes an
external co-processor unit (such as a BBC Microcomputer System Second
Processor).

Default setting: co-processor not selected.
(18) Detault file server (Network users only)

If your computer is connected to a network of other BBC computers (using the
optional Advanced Network Filing System (ANFS)), your storage and
communication needs will be met by one of the computers — referred to as the
file server. This option allows you to specify which network file server is to be
selected when the computer is switched on.

Default setting: 0.254 (1.e. station number 254 in network 0)
(19) Default printer server (Network users only)

Most networks incorporate a printer server which is a computer dedicated to
controlling the printed output from all stations in the network. This option
allows you to specify the identity of that network station.

Default setting: 0.235 (i.e station number 235 in network 0)

(References to ‘network 0’ in items 18 and 19 mean ‘the normal network’ — it 1s

28

possible to link different networks together by means of bridges and in these
cases, each individual network has a unique number.)

TIMPAINT | | O O i]oading time 3 minutes
This program allows you to create and save your own pictures using many of

the advanced graphics features provided by your computer. To load
TIMPAINT, type:

CHAIN"TIMPAINT''[RreTurn]
Once loaded, TIMPAINT shows the following display:

The boxed area on the left 1s the menu, from which you select the various
functions, colours and typestyles (fonts) that you wish to use. The larger,
empty area to the right 1s the ‘canvas’ on which you create your artwork.

The menu 1s divided into 3 columns:

— the leftmost column determines which colour will be used for all subsequent

operations, the one selected being shown in the larger rectangle at the
bottom of the menu;

— the middle column contains all the available functions, each identified by a
special symbol, such as camera, typewriter, scissors etc, each of which 1s
described below:

— the rightmost column is further subdivided:
— the top four boxes contain the colour ‘palette’;

29

— the boxes immediately below the palette contain the
four types of line which can be used;

— the bottom four boxes show which font will be used when text is placed on
the screen.

Selections from the menu are made by moving the arrow pointer to the
required box and pressing [ctrL }. Slow movement is provided by the four
cursor control keys; fast movement (eight times normal) 1s provided by the
simultaneous depression of [sHirr]. (It is also possible to operate TimPaint using
a joystick, in which case the ‘fire’ button replaces the function of [ctaL | See
Chapter 8 for instructions on connecting a joystick to your computer.)

The current menu selections are normally highlighted and, when TIMPAIN'T 1s
first loaded, the selections are:

— black background;

— white foreground;

— spray can option (see below);
— joysticks off;

— grid off;

— solid lines:

— normal font (Fa).

Thus, to select a background other than black, move the pointer to the box
containing the colour or pattern of your choice and press | ctaL |; the box at the
bottom of the menu will then fill with your selection.

You can change the palette (i.e. the range of available colour combinations)
using the four boxes at the top of the third menu column. For example, to
change red to green, move the pointer to the red box and keep pressing | ctaL }
until the box shows green.

Similarly, the drawing function, line and type styles are selected by moving the
pointer to the appropriate box and pressing | crrL |.

Whenever you move the pointer outside the menu area the arrow is replaced
with the symbol denoting the function you have selected. The various
procedures are described below, on the assumption that the corresponding
function has already been selected from the menu.

The spray gun allows you to draw one or several lines at a time, each dot of the
spray leaves one line behind it when it moves. Press to increase the
number of dots and [oeLete] to reduce it. To use the spray gun, move to the place
where you want to start your line and press [ctrL |. Then, with | ctrL | held
down, move around the screen and release | craL }.

The hand will move the whole screen in any direction. To start, move the hand
symbol to a readily identifiable point on the screen and then press| c1rL |. With

30

| ctrL] held down, move the hand to the position to which you wish to move the
original point and release [ctrL | — the whole screen will then be moved. Note
that any part of the picture which 1s shifted off the screen will be lost.

The flood fill option can be used to fill any enclosed area of the screen with the
current colour. Simply move to any point within the area you want to fill and
press [ctaL |. Note that if you try to fill an outline which has a gap in it then the
colour will escape out of the gap and carry on until it hits a solid boundary or
the edge of the screen. Areas can be ‘unflooded’ by pressing | 1a8 |. Sometimes,
however, this operation does not only reverse the action of the flood but affects
other shapes on the canvas, depending on the colours used.

The line allows single lines to be drawn anywhere on the canvas. Press | ctrL |
to start a line and release it when you are happy with its position.

Ellipse outlines and solid ellipses are produced by moving to the point which is
to be the centre of the ellipse and pressing [ctaL |. Then, while holding | ctaL |
down, the width and height of the ellipse can be altered using the arrow keys.

Circle outlines and solid circles are drawn in a similar manner — press | ctaL | to
indicate the centre and alter the position of the circle symbol to produce the size
of the circle you want — then release [ctrL }.

The camera allows copies of any rectangular area of the canvas to be made.
Move the symbol to one corner of the area and press [ctrL |. Then hold down
| ctre | whilst moving the cursor keys to increase the depth and width of the
box. Release [ctrL | when you have enclosed the area to be copied. Pressing the
cursor keys now will move a second box which should be placed where you want
the copy to be put. The copy i1s made by pressing | c1rL | |

The scissors will move a rectangular area of the screen, replacing it by a block
of the background colour. This is preformed in the same manner as the copy
routine described above.

The polygon allows a series of lines to be drawn, each one beginning where the
previous one finished, thereby producing a continuous line drawing. Press and
release [ctaL | to begin and then each time a line is to be drawn.

The typewriter can be used to print text on the screen. On the canvas, the
typewriter symbol 1s replaced by a ‘pencil’ and the start point for the the text is
identified by pressing {cmri | Any subsequent key depressions produce
characters in the screen in the current font and the end of the text is marked by
pressing Ireturn]. Note that text can only be placed between the starting point
and the right hand side of the canvas — it 1s not allowed to wrap round to the
beginning of the next line.

When selected, the joystick option allows the movement of the symbols to be

a1

controlled by a joystick rather than by pressing the arrow keys. In addition the
fire button replaces the [ctaL | key.

The grid option restricts movement of the symbols to positions in an invisible
orid on the screen, making it easier to draw several circles with the same centre
point etc.

Loading and saving can be carried out by pressing L or S. This clears the menu
area and allows you to type in the name you wish to use.

To clear the screen and start again press [ctaL |4+| 7a8 |. This will reset all the
options to their initial values.

DBASE | O O | Loading time 2 minutes
—

This program is a very simple database which has been set up in the style of a
card-index address book. To load DBASE, type:

CHAIN''DBASE'' |[reTurn]

Each ‘card’ contains 4 slots; one each for the name, address, telephone number
and birthday of an individual. Details of up to 100 people can be stored.

You can move through the database using « and — which will move you on
back and forward one card respectively.

To move between the different slots within a particular card use 1 and | . The
current slot 1s always highlighted in black.

Initially the address book contains no information, each of the slots in each card
is blank. To enter information for a person you should move to, and then edit
each slot in turn by pressing E. Any characters you type will be placed in the
current slot until the slot is full or you press [return]. The maximum number of
characters for each of the slots is:

name 20 characters;
address 80 characters;
telephone number 12 characters;
birthday 12 characters.

You can SAVE the information currently held in the database by pressing S at

any stage other than entering or editing a slot. S saves the complete database
with the name FILE.

o o | Do not attempt to SAVE a database to the Welcome cassette itself —
[— 1 you will overwrite the next utility program.

The new file will automatically overwrite the previous version.

O
0

32

Pressing L will LOAD the information contained in FILE into the computer.

If you wish to edit the contents of an existing slot you can do it in a similar way
to entering new details — when you press E the current slot will be cleared so
that your new data can be typed in.

Once you have created your database, you can use the ‘find’ facility to select
cards satisfying specific criteria. For example you can find someone’s telephone
number by entering their name or you can find the names and addresses of,
say, all the people who have birthdays in the next month.

To do this you should initially move to the slot which corresponds to the piece of
information you know. In the first example this would be the ‘name’ slot, in the
second example it would be the slot marked ‘Birthdy’. Press F and type in the
information you know, (for example SMITH or AUGUST) and press [return].

The computer will FIND the cards you are looking for. A message at the bottom
of the screen will say how many cards have been found and you will be moved to
the first one. Now when you use < and — you will move only between the cards
found for you by the computer.

If you do a further search then this will only be carried out on the cards found
previously. Hence a search for those named SMITH followed immediately by a
search for those whose address 1s in LONDON will find all the people who are

called SMITH and who live in LONDON.

Note that the computer will treat upper and lower case letters as the same (i.e.
BELL is considered to be identical to Bell) and that it looks for an exact match

with what you have typed. Hence, searching for D BELL will not find entries
like D J BELL or DAVE BELL.

If you wish to return to the whole file then press R. This will restore the file for
you. The file is automatically restored if no cards are found in a search.

33

2. The BASIC Language

Writing a program

Languages such as English are too ambiguous to be used for communication
with a computer. Instead, all instructions are given using a computer language
consisting of just a few hundred words that the computer can interpret.

Your computer comes complete with the powerful and flexible computer
language, BBC BASIC. This is composed of a number of English-like words,
which make the language easy to learn and use. (You may already be famihiar
with some other computer language such as Pascal. Chapter 8 describes how
you can expand your system to include such a language).

In the last section you learnt that the computer can obey some commands
immediately. For example, if you type:

PRINT '"'Hel to'"'[reTuRN]

the computer displays the the word Hel lo.

PRINT i1s a BBC BASIC keyword that the computer recognises. It tells the
computer to display on the screen whatever follows the PRINT statement. The
most important BASIC keywords are described in this section of the book, and
a full list of all the keywords and their meanings 1s given in Appendix F.

You may already have found out what happens if you give a command to the
computer that it cannot interpret. For example, if you type:

PRINT "Hello]return]

the computer responds with the message:
Missing "

The computer gives an error message to show that it cannot obey your
command because you have not followed the rules of the BASIC language. It is
easy to make mistakes when giving the computer instructions, and error
messages are helpful in tracking down and correcting these mistakes.

If you want the computer to carry out a calculation in BASIC, you can use
either the normal keyboard or the numeric keypad. Try:

PRINT 8+7[return]
PRINT 20-9.5]|returN]

34

Multiplication involves using the * symbol, and division, the /:

PRINT 12*9|return]
PRINT 25/2]rerturn]

Basic contains many other arithmetic functions which can be used to find
things like the square root of a number, or calculate its logarithm. Try typing:

PRINT SQR(9) |return]
PRINT LOG(75) [reTurn]

If you intend to use your computer mainly for carrying out many complex
calculations, you may find your needs are better met by ViewSheet which is
described in Chapter 4.

The screen is looking rather cluttered now, so type:

CLS|reTunn]

which is the BASIC instruction to clear the screen.

You have been giving commands which the computer obeys immediately. More
commonly, you will give the computer a series of numbered instructions to
obey. These instructions are stored in the memory and are called the program.
‘The computer only obeys program instructions when you want it to do so.

You can see the difference between the methods of giving instructions by
typing:
10 PRINT "Hello"[return]

This time nothing happens and the > prompt reappears.

At the start of the line you typed the number 10. This is called the line
number, and it tells the computer that the statement which follows i1s not to be
obeyed immediately. Instead the line is stored in the memory, as you can see by

typing:
LIST|return]

Your one-line program is listed on the screen. You can make the computer
carry out or execute this very short program by typing:

RUN|ReTurn]

Once the computer finishes executing the program, the > prompt returns to
the screen. This shows that the computer is ready to accept further commands
at the keyboard. The program is still stored in memory, as you can confirm by

typing:
LIST]reTURN]

39

If you add another line to the program the computer automatically puts the
lines into line number order. For example, type:

3 PRINT "This is another Line''[return]

and LIST the full program.

Program lines are usually numbered in tens as this makes it easy to insert
extra lines later. If you type:

RENUMBER|reTuRN]

the computer automatically renumbers the program, making the first line 10.

Once a program is complete it can be saved onto cassette or disc so that it can be
used again. The Welcome software contains a series of programs which have
been saved in this way. You probably don’t want to save the present program,
so type:

NEW[reTunn]

which tells the computer to ‘forget’ the program - you can confirm this by
trying to LIST 1t.

You may accidentally lose a program by pressing [sreak], or by typing NEW
before you realise that you have not saved a copy of the program. Normally, the
program can be recovered provided no new program lines have been typed. Use
the command:

OLD]reTurn}

to restore the old program.

A simple program using variables

Throughout this section and the remainder of the chapter, you will be required
to type a number of short programs and, for clarity, we shall omit the [reTurn]
symbol at the end of each line.

Type the following program in:

1@ PRINT ''Can you give me a number '';
20 INPUT yournumber
30 PRINT "You typed '"';yournumber

and then RUN the program. The computer obeys line 10 and displays the
question:

Can you give me a number ?

The question mark is added automatically by the execution of line 20. The

30

INPUT statement makes the computer wait for you to type something — in this
case a number. Type:

6| return]

Once you have typed the number, line 30 1s obeyed and the message displayed
1S:

You typed 6

Line 20 causes the computer to store your number in a variable, so-called
because its value can vary. Here the variable i1s called yournumber. You can
think of a variable as an internal pigeon-hole which the computer fills with a
value, 1n this case 6.

Whenever the computer comes across any reference to yournumber in the
program, it uses the current value of the variable. So line 30 causes the
computer to print You typed, then find the value of the variable yournumober,
and finally print that value, 6.

RUN the program again, inputting a different number, and watch the effect.
yournumber is a numeric variable — it can be used to store the value of whole
numbers, decimals, or negative numbers. Variables can be used in arithmetic —
add these lines to the program and RUN it again:

480 PRINT "Twice ";yournumber;' is ";Z2*yournumber
58 PRINT "'Subtract 5 from ";yournumber;'" and you get ' ;yournumber-5
6@ PRINT"Add 28 to ";yournumber;" and you get "'; Z28+yournumber

The value of a variable does not have to be input, it can be given directly. For
example, type:

LET height=2.1|[return]

Then type:

PRINT height[reTurn]

PRINT height*2]Rreturn]

You can change your program to include a LET statement by adding these
lines:

35 LET yournumber=10
36 PRINT "But the new value 1s "';yournumber

LIST the program so that you can see the order in which the computer obeys
the instructions, and then RUN the extended program.

In the versions of BASIC provided on some computers only very short variable
names like Q or AB are allowed. BBC BASIC, on the other hand lets you use

37

long variable names, which makes a program easier to follow and easier to
modify. For example, the following are all allowed statements:

ET LengthOfCarpet=7.56
LET costof3Tins=1.21

LET SPEED_OQOF_CAR=60 (the underline character is on the same
key as the £)

Although all the examples above have LET before the variable name, its
inclusion is optional. The example program runs just as well if you type:

35 yournumber=10
As LET is optional you will find it is omitted in most programs.
Whilst variable names may be of any length, they must obey a few simple rules:

— The variable must begin with an upper- or lower-case letter, the £ or
underline character.

— The other characters can be upper- or lower-case letters, the £ or underline
character, or numbers.

— Variables that begin with Basic keywords such as PRINT or LET are not
allowed.

As all Basic keywords are capitalised, it is easy to avoid including keywords at
the start of a variable name by using only lower-case letters in the variable.
This also makes program listings more readable, as the variables stand out.

Integer variables

The variables described so far are known as real variables, because they can be
used to store real numbers — those with a decimal point. A real variable can be
used to store numbers with up to 9 figure accuracy.

The computer always uses the same amount of memory to store a real quantity,
even if the number stored there i1s an integer (a whole number). Some
programs only need integers, and using real variables wastes computer

memory. It also slows the program down, because the computer will treat 9 x 8
as 9.00000000 x 8.00000000 with all the extra calculation this entails!

An integer variable is another sort of numeric variable, and is used to store
only whole numbers in the range -2147483648 to 2147483647. Calculations
with integer variables are much more rapid, and the variables themselves use
less memory than real variables.

38

An integer variable always ends in a percentage sign, as shown in the program
below:

19 PRINT "Type any number '';
20 INPUT wholeZ
33 PRINT "You typed '";whole7

RUN the program and input, say 4.5. The result shows why you must not use
an integer variable unless you are certain that the value stored there will
always be a whole number.

The variables A% to Z% are known as the resident integer variables and
memory space is automatically given to these variables when the computer is
switched on, so no extra memory is taken up if they are used in a program.

The computer loses the values of other variables after a program is run, but the
values of A% to Z% remain unchanged, even after typing NEW or pressing
| sreak]. They provide a means of passing information from program to program.
For example, the Welcome cassette uses a resident integer variable to tell each
program whether or not the user’s cassette recorder has automatic motor
control.

There 1s one other special resident integer variable, @%. The value of @% is
used to contro] the way the computer prints numbers. @% is described in more
detail on page 57.

String variables

The variables described so far are numeric variables — they can be used only to
store numbers. The computer can also store strings of characters (ie words and
phrases) in what are called string variables. A string variable always ends in
a dollar sign, as you can see in these examples:

Type_of_car$="Mini Metro"
CURRENCY3=""Francs"
Weather$="Wet"

The characters within the inverted commas are called strings. Type in and run
this brief program:

18 PRINT "What 1s your name '';
20 INPUT name$
30 PRINT "Pleased to meet you '';name$

The string variable name$ in line 20 is used to store any name typed in. The
contents of name$ are printed out by line 30. A string variable can hold from
zero to 255 characters. You can prove this for yourself by running the program
a few times and inputting names of different lengths.

39

Any set of characters can be stored 1n a string variable, for example:
a_mixed_string$="1237%.abca*"

However, you cannot carry out arithmetic on strings, even if the variable
contains only numbers. Thus, although:

examp Le$=""365"
is an acceptable string,

PRINT example$+5

is meaningless to the computer. The contents of a string variable are treated as
a series of characters. You cannot reasonably carry out arithmetic on a house
number or a shoe size, and numbers stored as a string fall into the same
category.

Help that BBC BASIC can give you

BBC BASIC has many features to make programming simpler. You may
already have made a few mistakes when typing the example
programs. If not, type:

10 PRONT "This is a mistake.'"[return]

and see what happens when you run the program. The most long-winded way
of correcting the error is to type the entire line again. Alternatively you can

edit or alter the line using the cursor control and keys at the right-hand
side of the main keyboard.

Press 1 . As soon as you press the key, the cursor splits into two — the flashing
cursor is the copy cursor, which you can move around to copy text from
elsewhere on the screen; the white block is the write cursor, showing where
anything you type or copy will appear. The write cursor moves only after a
character has been typed or copied.

Move the copy cursor around until it 1s underneath the first character in the
erroneous line and then press once. The ‘1’ is copied into the character
position indicated by the write cursor. Now press key four times more to

give:
19 PR

You do not want to copy the next character because it is incorrect. Type I at
the keyboard, and it will appear on your new line then use — to move the copy
cursor until it is under the N in 10 PRONT. You can now copy the rest of the line
to give:

19 PRINT "This is a mistake."”

40

(If you make any errors when copying, you can use [oeLete] to remove the most
recent characters on your new line). When you have copied the last character,
press [retunn], and the corrected version of the line will replace the old one.

You can move the copy cursor elsewhere on the screen at any time whilst
copying, so you can copy sections from several different lines to create a
completely new line. If you want to abandon editing a line half-way through,
press [escape]. Do not press [return], as your old line will be replaced by the
partially-edited version.

It i1s worth spending some time learning how to edit lines, as 1t speeds up
program-writing considerably. However, once you begin to write longer

programs you will probably want to use the more powerful editing facilities
provided by the Editor, which is described in Chapter 6.

AUTO

Earlier you saw that program lines are usually numbered in tens. This leaves
plenty of free line numbers for any statements that are inserted later. If you
wish, the computer can automatically number lines for you. Remove the
current program using NEW and then type:

AUTO|RreTurN]

The computer prints 1@ and waits for you to type a statement. Type the
following, remembering to pressing [return] after each line. (You can still use
the editing facilities: most of line 40 can be copied from line 20, for example).

18 PRINT "A short program"

200 PRINT "What 1s your first number "';

30 INPUT first

40 PRINT "What is your second number ';

50 INPUT second

60 PRINT first;'" plus ";second;" gives ";first+second

After the last line the computer prints 70. As the program is complete, press
|[escare] - you no longer want the computer to generate new line numbers. You
can now LIST or RUN the program.

AUTO can be used to begin numbering at any line number, with any interval
in between. The default interval 1s ten, so AUTO 100 produces line 100, 110,
120 and so on. AUTO 15,1 would produce line numbers 15, 16, 17 etc.

LIST

You have already used LIST, but an extended LIST command is also available
which 1s useful as a cross-reference in longer programs. Try typing:

LIST IF PRINT[reTurn]

41

and

LIST IF first]return}

In other words LIST IF displays only those lines containing the specified
sequence of characters.

DELETE

Sometimes you will find you need to remove lines from a program. Single lines
can be deleted by typing the line number and pressing |return]. A number of
lines in sequence can be deleted using the DELETE command. Try typing:

DELETE 20,50]return]
LIST|ReTURN]

which deletes all line numbers from 20 to 50 inclusive

RENUMBER

If you have inserted many extra lines in a program you can tidy it up by using
RENUMBER to spread the line numbers out at intervals of 10. Renumbering

always begins from the first line of the program. Like AUTO, you can use
variations such as RENUMBER 100.5 to make the first Iine 100 and successive
lines 105, 110, etc.

REM

The REM statement enables you to put remarks within a program to remind
yourself or others what parts of the program do. Sensible variable names can
make a program largely self-documenting, but REMs are useful to summarise
the purpose of a number of lines:

190 REM Lines 118 to 150 plot a circle
500 REM Find the largest number and print 1t

The computer ignores any line beginning with a REM statement when a
program 1S run.

Minimum abbreviations

If you are not used to a keyboard you may find it tedious to pick out the correct
letters to type PRINT, for example. The computer recognises BASIC keywords
if they are spelt in full or if an allowed abbreviation is used. Type:

P.""Hel Lo"|reTurn]

This is exactly the same as:;

PRINT"'Hel Lo"'|reTurN]

42

and 1s obeyed as such. Similarly, I. is the abbreviation for INPUT. Use NEW to
remove the current program, select AUTO line numbering and then type in the
following program, which uses several abbreviated keywords:

19 P."Pick a number "';
20 I.choice

30 P."Number '"';choice;
40 P.""A good selection!"

INRL

Now LIST the program — abbreviations used in program lines are expanded to
their full length automatically when a program 1s listed.

The abbreviations for all BASIC keywords are given in Appendix F.

Using the function keys

Most of the keys on the keyboard print a particular character whenever they
are pressed. Across the top of the keyboard are a group of red keys which act
differently. They are called the function keys. Each key can be programmed
to produce a character or string of characters when it is pressed.

For example, you can program to produce the word PRINT by typing:

*KEY@ PRINT|[RreTurn]j
can be programmed to produce INPUT if you type:
*KEY1 INPUT[ReTurn]

Now press and to see the effect. You will notice that after the
characters have been printed the cursor remains at the end of the line.

Sometimes it 1s useful to program a function key so that it behaves as if [return]
had been pressed after the characters are printed and this is achieved by
Iincluding the characters {M in the key definition. For example:

*KEYZ2 LIST!M|return]

causes the current program to be listed whenever 1s pressed. Some screen
modes only print 20 characters per line, which makes a listing very difficult to

read so it would probably be better to define so that the computer
switches to mode 135, the most readable mode, before listing a program:

*KEYZ2 MODE135!MLIST !M|revurn}

It is useful to write a brief program that defines the keys. This program can be
loaded and run at the start of a computing session. The key definitions remain

set until:
— the keys are redetfined;

— a *FXI18 command is given, which clears the keys;

43

— there is a hard break (i.e. | ctaL |+[BRrEAK])

Type 1n the following program, which sets all the function keys:

18*KEY@® MODE135!MLIST!M
2O*KEYT RUNIM

30*KEYZ MODE

4A*KEY3 PRINT

SB*KEY4 INPUT

60*KEYS> COLOUR

/B*KEY6 MOVE

30*KEY7 DRAW

90*KEY8 PLOT

100*KEY9 GCOL

Later you may want to use key definitions of your own, but you will find the
above program useful in the next few chapters. The next section shows how you
can save the program you have just written so that it is available whenever you
need it.

Saving and loading programs

Most of the programs you have just typed in have been fairly short and do not
really do anything worthwhile. It 1s therefore not really worth keeping a
permanent copy on cassette or disc but, as you learn more about BASIC
programming, you will probably want to keep versions of your masterpieces so
that you can run them without having to retype all the instructions from
scratch.

Making a permanent copy of a program is referred to as saving a program and
the BASIC language provides a special command for this purpose. Its format is:

SAVE "name''[reTurn]

where name (which must be enclosed in double quotation marks) is something
you choose to identify the program from all others.

The SAVE command works equally well if you are using cassette tape or disc as
a storage medium and the only difference is the number of characters which a
name may contain (see Chapter 5).

Note: You will need either a cassette (not the Welcome cassette) or a so-called
formatted disc (again not the Welcome disc) if you wish to carry out the
commands given below.

S0, to SAVE the function key definition program you have just entered, you
could type:

SAVE "KEYS'"[reTurn]

44

or possibly:

SAVE "KEYDEFS"|Rrerunn]

or a SAVE command including any name you wish.

ngj

Load the cassette into the recorder and rewind it to the start of the
tape (not the transparent ‘leader’) then type the save command of your
choice.

As soon as you press [return] the computer responds with the message:

RECORD then RETURN

which is to remind you to press the RECORD button on the recorder —
saving does not actually begin until [return] is depressed.

There will be a momentary delay before the computer begins to store a
copy of your program and a message giving the program name and an
indication of its length is displayed while the transfer takes place.

A short bleep and the reappearance of the > prompt indicate that
saving 1s complete and, if your equipment does not provide motor
control, you will have to press the STOP button on the recorder.

Load the disc into the disc unit and then type the SAVE command of
your choice.

As soon as you press |return], the disc unit light comes on and the motor
begins to whirr before the program is saved.

The > prompt reappears when the program has been saved.

Note that SAVE merely transmits a copy of your program, it remains in
memory for you to RUN, LIST or modify.

The process of retrieving a program from either cassette or disc is referred to as
loading and, once again, the BASIC language provides a special command:

LOAD "'name'’'[return]

Clearly, the named program must exist on the medium in question.

Take a deep breath and remove your function key definition program from
memory by using NEW.

O O
—

Rewind the tape to the start. You will first have to use:

*MOTOR 1]ReTuRrN]

if your equipment provides motor control. Then type the LOAD
command containing the name of your function key definition
program.

45

As soon as you press [return], the computer will display the message:

Searching

and, after a short delay, you will see the name of your program
together with a slowly-moving count. A short bleep and the
reappearance of the > prompt indicates that loading is complete and, if

your equipment does not provide motor control, you should press the
STOP button on the recorder.

Simply type the LOAD command containing the name of your function
O | key definition program and press [return]. The > prompt will reappear
0 as soon as the program is loaded.

LIST the program to prove that it has been retrieved.

Note that the LOAD operation replaces the current program, so you must be
sure that you have SAVEd it if necessary.

To program or not to program

In the previous sections you have been introduced to a few of the BASIC
programming facilities on the computer. You may be eager to learn more — in
which case the next few sections are for you.

Or you may feel you have learned quite enough about programming. Is it really
necessary to know so much before you can use the computer?

It is worth emphasising at this stage that it 1s up to you how you choose to use
your computer.

Many thousands of people enjoy computing as a hobby. They write programs to
play games or work out the monthly budget. They attend computer clubs and
swap hints and tips with other enthusiasts.

Other computer owners never bother to learn beyond the rudiments of
programming. When they want software to catalogue their stamp collection,
they buy a pre-written program from a local shop or via mail order. Rather
than struggling to write a program to play noughts and crosses they prefer to
purchase complex games such as FElite, which have taken professional
programmers months to produce.

Some computer owners play the occasional game but primarily use the
computer for more serious purposes. They prepare and print out letters with
the help of a word processor, use spreadsheets to help them make financial
decisions, and store important information on tape or disc.

The computer is a tool; complex and sophisticated, but a tool nonetheless. Do
not feel that you must learn to program to use it properly. Your computer
contains other powerful facilities which are described in later sections. A wide

46

range ol soltware to meet virtually any need 1s available — you do not need to
program to find the computer a valuable and useful aid.

The next few sections demonstrate some of the possibilities of programming.
They are intended only as an introduction to BASIC, but you will learn more
from them if you experiment with the example programs that are listed.
Change the values of the variables or add some lines of your own. Don’t worry if
you make a mistake that seems to keep the program going forever. You can
always press [escape], which stops the program and brings back the > prompt to
show you can again input instructions.

Simple graphics

The computer provides eight different screen display modes and the Welcome
software showed you one of the most obvious differences between the modes —
the number of characters that can be displayed on a line. The Welcome
software also demonstrated how some modes allow both the printing of text and
the display of graphics.

The modes differ in a number of important ways. Some of these differences will
be explained in this chapter, but a full list of the characteristics of the modes is
also provided in Appendix A.

Two sets of modes are available, modes 0 to 7 and modes 128 to 135. Each
low-numbered mode N has a high-numbered counterpart mode N+128 which
behaves visibly in exactly the same way and has the same features. For
example, mode 7 and mode 135 are identical in appearance.

You should use modes 0 to 7 if you are writing programs which may also be run
on the original BBC Model B microcomputer. In the Master Series computers,
modes 128 to 135 leave more memory free so that longer programs can be
written. For this reason you should always use the high-numbered modes but,
in the example programs that follow, all references to a particular mode apply
equally well to its lower-numbered counterpart.

Modes 128, 129, 130, 132 and 133 are known as graphics modes because they
allow the use of both text and graphics. Modes 131 and 134 are text-only
modes. Mode 135 allows the use of graphics, but the commands involved are
very different and so are dealt with in a separate section beginning on page 94.

In each of the graphics modes, points on the screen are given coordinates so
that their position can be identified.

47

1023

640 A

800

512

1000 C

0 1279

The point A in the figure has coordinates 640 across and 512 up, roughly the
middle of the screen. The point B is at position 100,800 and C i1s at 1000,20.

Type in and run this program:

1@ MODE 128

20 MOVE 100,100
30 DRAW 800,100
4 DRAW 840,990
50 DRAW 100,100

Line 10 changes to a graphics mode, and as a result the invisible graphics
cursor 1s automatically positioned at point 0,0 — the bottom left corner of the

graphics screen.

Line 20 causes the computer to move to 100,100 without drawing a line.

The DRAW command draws a line from the last point visited (which was
100,100) to 800,100. The remaining DRAW commands produce a series of

joined hines making a triangle.

Barlier you saw that after running a program you can clear the screen by
typing:
CLS[reTurn]

You can also clear the screen with:

CLG]RETURN]

Although both commands appear to have the same effect, CLS actually clears
the text screen and CLG clears the graphics screen. Normally these are exactly
the same and fill the whole screen. Later you will see that the areas in which

48

text and graphics appear can be separated, and so it is useful to have two
commands for clearing the screen.

The lines drawn in mode 128 are the finest that your computer can produce,
and so this mode is used whenever very accurate high-resolution graphics are
needed. The same program runs in other graphics modes, as you can see if you
edit line 10 and then run the program again, 1.e. type:

10 MODE 129[reTurn]
RUN|ReTurn]

This time the lines produced are thicker — mode 129 is a medium-resolution
mode. The main advantage it offers over mode 128 is that it allows the display
of four colours at the same time. You can change the colour of the lines by
adding:

55 GCOL @,1
45 GCOL @,2

and running the program again. GCOL is used to select the colour to be used 1n
the DRAW statement. The number following GCOL 0, is related to a particular
colour in each mode. In mode 129:

GCOL 0,0 gives black lines
GCOL 0,1 gives red lines
GCOL 0,2 gives yellow lines
GCOL 0,3 gives white lines

Once a colour has been selected, it 1s automatically used in all further DRAW
statements until a new GCOL command 1s given.

GCOL can also be used to change the background graphics colour. For
example, type:

MODE 129]return]
GCOL @,130[return]
CLG|rETURN]

This sets the background to yellow, and then clears the whole graphics screen
to that colour. All GCOL numbers greater than 127 change the background
colour.

RUN the program again after editing line 10 to be:
19 MODE 130

Mode 130 1s a low-resolution mode giving much thicker lines, but up to 16
colours can be displayed simultaneously, eight of these being flashing colours.

Note that GCOL 0,2 gives green and not yellow in this mode. The numeric

49

references to colour are not the same in all the graphics modes. You must refer
to Appendix A for the correct GCOL number to produce a particular colour.

In mode 130, GCOL O can be followed by any number from 0 to 15 to select a
colour. Try changing the GCOL statements to see its effects.

The PLOT command

The PLOT command is an all-purpose drawing command. MOVE and DRAW
are special examples of PLOT. Because moving and drawing are used so
frequently, the PLOT commands that produce these effects have been given
equivalent keywords:

PLOT 4,100,100 is the same as MOVE 100,100
PLOT 5,800,100 is the same as DRAW 800,100

The first number after PLOT decides how the lines are plotted. PLOT
commands enable rectangles, parallelograms, circles, segments, sectors, arcs,
triangles or ellipses to be drawn in outline, solid colour or patterned. You have
seen this demonstrated in the Welcome software. A program to draw a solid

rectangle 1s:

19 MODE 129
15 REM move to one corner of rectangle

20 MOVE 106,100
25 REM move to diagonally opposite corner
39 PLOT 101,800,900

PLOT 101 tells the computer to draw a rectangle with opposite corners at the
last point visited and the present point:

800

300

100
]

>4

50

Change line 20 and RUN the program again:
200 MOVE 300,100

You may not be surprised to see that the rectangle gets smaller because the
position of the first corner has changed. If you wanted to plot a whole series of
identical rectangles in different positions, you would have to calculate the new
position of the opposite corner for every rectangle. There is, however, another
PLOT command which avoids this problem by describing the rectangle shightly
differently.

Instead of giving the exact or absolute position of a point on the screen, its
distance from another point can be given — this 1s the relative position of the
polnt:

300 B3

500
500 A

200

The point A in the figure 1s at 500,200. The point B is 200 to the left and 300
above A, so its relative position 1s -200,300. This program draws a rectangle
using A and B as the positions of the two corners:

130 MODE 129
20 MOVE 500,200
30 PLOT 97,200,300

Now change line 20 and RUN the program again:

20 MOVE 300,100

PLOT 97 tells the computer to draw a rectangle using the two points given,
with the second point being relative to the first point. This means that the
computer always draws the same size rectangle, wherever the first point is
placed. Relative positioning 1s very useful if a drawing needs to be moved

around on the screen.

bl

The PLOT commands are very versatile and provide a great deal of control over
how 1mages are drawn. Lines or figures can be drawn absolutely or relatively,
solid or dotted, in the foreground or background colour. Figures can be drawn
in outline or as solid blocks of colour. A full list of the PLOT commands 1s given

in Appendix H.

A circle can be drawn by giving the position of its centre and a point on its
circumfierence:

13 MODE 1
15 REM coordinates of centre

20 MOVE 300,300
25 REM coordinates of point on circumference

33 PLOT 149,550,300

Here 1s an example of a PLOT command that draws a solid figure. Edit line 30
to:

30 PLOT 157,550,300
and RUN the program again. You can get a red circle by adding:
16 GCOL 4,1

Other PLOT commands enable you to create solid rectangles, ellipses, sectors of
a circle, and so on. More complex figures must be built up using these simpler
shapes. Any shape can be flood filled with colour once it has been drawn:

1T REM Teddy - an unfinished masterpiece
1@ MODE 130

19 REM select red

20 GCOL 6,1

29 REM draw circular head
30 MOVE 504,500

40 PLOT 149,800,500

49 REM right eye

50 MOVE 620,600

60 PLOT 149,680,600

69 REM left eye

78 MOVE 380,600

83 PLOT 149,440,600

89 REM rectangular nose
90 MOVE 460,600

100 PLOT 101,540,400

189 REM use arc for the smile
110 MOVE 500,600

120 MOVE 350,350

130 PLOT 165,650,350

02

139 REM change to yellow for flood-fill
140 GCOL 0,3
15@¢ PLOT 133,500,320

You might like to finish the picture by adding ears and colouring the eyes.

The Teddy program runs in mode 130, which allows 16 different colours. In
other modes, such as mode 129, only four colours can be displayed at the same
time. The range of colours is increased by four extra patterns made up of
various colour combinations. For example, in mode 129:

GCOL 16,0 red-orange
GCOL 32,0 orange
GCOL 48,0 yellow-orange
GCOL 64,0 cream

These colours are produced regardless of the second number used. The effect of
the commands varies from mode to mode, as the patterns are built up from the
colours available in that mode. Change the GCOL commands in the Teddy
program to see some of the patterns available in mode 130.

You can create your own colour patterns in place of those provided — this is
described on page 103.

Printing text

Text can be displayed in any of the eight modes, but the number of characters
per line varies from mode to mode, and can be 20, 40 or 80 characters. Try:

10 MODE 128
20 PRINT "Here i1s a sentence"
30 PRINT "to demonstrate printing.”

Edit the program and run it a few times with line 10 altered to produce mode
129, 130 or 135. Mode 135 gives the clearest display. If you are using a TV
rather than a monitor you may find mode 128 text rather hard to read.

After obeying any PRINT statement the computer moves to the start of a new

line unless instructed to do otherwise. Run the program again after changing
line 20 to:

200 PRINT "Here 1s a sentence'';

The semi-colon at the end of the line tells the computer to stay on the same line
after printing the string. The result is:

Here 1s a sentenceto demonstrate printing

The semi-colon 1s useful if you are printing a variable within a sentence, and
want all the text to be on the same line. Add these lines:

a3

40 my_age=1085
5@ PRINT "I am ";my_—_age;" years old."

The spaces within line 50 are very important, as they stop the text running
together untidily, as in the first example.

Including apostrophes causes extra blank lines to be printed. For example:
5@ PRINT ''""I am "';my_age;" years old."
prints two blank lines before the actual line of output.

The position of any character on the screen can be described in terms of its text
coordinates. Text coordinates are given relative to the top left of the screen,
unlike graphics. In mode 135, the text coordinates are:

0 » 39

Y

24

Notice that although there are 40 character positions on a line, the positions
are numbered zero to 39, and the lines are numbered similarly.

The PRINT TAB statement enables you to control the position at which
printing begins. Use NEW to remove the current program then type:

18 MODE 135
20 PRINT "'0123456/789"
38 PRINT TAB(5);"An example of TAB."

When run, this gives:

123456789
An example of TAB

Printing begins at character position 5 on the line, ie the 6th column. More
than one TAB can be used on the same line, but if the computer has already

o4

moved beyond the required TADB position it begins a new line. For example:

30 PRINT TAB(5);"'An";TAB(10) ;"example' ;TAB(15) ;"of" ; TAB(20) ;"' TAB."
glves:

A125456789
An example

of TAB.

The computer is already at character position 17 when it comes to the TAB(15)
command, and so it starts a new line.

By also giving the line number, you can use PRINT TAB to place text
anywhere on the screen, for example:

19 MODE 135

2@ PRINT TAB(8,24) "It can go at the bottom"

30 PRINT TAB(14,0) "Or the top"

40) PRINT TAB(1,11) "Or the left":TAB(27);"0r the right"

Line 30 should remind you that although mode 135 has 25 lines these are
numbered from zero to 24. Line 40 shows that once you are on a line you can
use TAB as before without referring to the line number.

Printing text in colour
The computer lets you change the colours used in printing text with the

COLOUR command. Type:

MODE 129]return}
COLOUR 1|return]

The number atter COLOUR indicates red in mode 129, and tells the computer
that the new text foreground colour is to be red. Anything you type from now
on will be printed in red. Type:

COLOUR 2[rerurn]
COLOUR 129{rETurn]

The first COLOUR command changes the text colour to yellow, and the second
changes the background colour to red. All text from now on will be printed as
yellow on red. You can change the entire screen to the new background colour

by typing:
CLS|retunn]

The COLOUR commands apply in all modes except modes 7 and 135. As with
GCOL, the numbers used to indicate a particular colour vary from mode to
mode. Consult Appendix A for a full list of the numeric colour references for
each mode.

2O

More advanced print formatting

When producing a table of figures, it is useful to print at particular positions
without having to use TAB every time. If the printed items are separated by
commas the computer does this automatically:

10 MODE 135

15 REM Llines 200 & 30 help

16 REM to show character positions

20 PRINT TAB(10) "111111111122222222223"
30 PRINT "@12345673890123545678901234567890"
483 PRINT 1.25,4.567,89

Running the program gives:

111111111122222222223
B123456789012345678901234567890
1.25 4.567 89

Each number is printed at the right hand side of a column 10 characters wide.
These columns are called fields and the width of each field i1s set to 10
characters when the computer is switched on.

Text 1s printed to the left of the field, as you can see by adding:

53 PRINT "Hello' ,"my","friend"
which gives:

TM1111111122222222223
B12345678901234567890123456 7890
1.25 4.567 89

Hello my friend

If a number or word is longer than the field width, the item following is printed
in the next empty field. For example:

1111111111222222222253

B123456789812345678901234567890

1.25 4.567 89
Congratulations my friend

The field width can be altered to vary from zero to 255 characters:

10 MODE 135

18 REM set field width to 8 characters

19 REM giving 5 fields across the screen

20 27=808

30 PRINT TAB(8) "'Income from sales regions"
40 PRINT '"Jan" ,1234.56,789,123.45,678.9

50 PRINT "'Feb" ,234.5,67.89,12,3456.78

26

@% in line 20 1s a special variable which controls the printing of numbers. In
this case 1t 1s used only to reduce the field width to eight characters. The result
is very untidy and confusing because the numbers are not aligned vertically
about the decimal point. Make line 20:

20 07%=80202038

This tells the computer to print each number to two decimal places and with a
field width of eight.

@Y% offers a great deal of control over the way the computer prints numbers,
and 1s discussed in more detail in the Reference Manuals. Note that once @% i1s
set, 1ts effects remain until you reset (@%, perform a hard break, or switch the
computer off.

Text and graphics

It is sometimes usetul to restrict the printing of text to part of the screen. You
saw an example of this in the Welcome software. The Turtle Graphics
(TURTLE) program lets you type commands at the keyboard, but these are
printed on the bottom four lines only, so that the screen display is not

disturbed.

Type:

MODE 135]|reTurn]

You can set up a text ‘window’ within which text is displayed by typing:
VDU 28,12,15,30,13]|reTurn]

Type a few characters at the keyboard (anything will do). The text is printed
inside a window 1In the middle of the screen.

The VDU 28 command 1s one of a series of VDU commands which enable you to
control the way text and graphics are displayed on the screen. VDU commands
can be used to change the colours of text or graphics, move the cursor, clear the
screen, etc. VDU 28 1s used specifically to set up a text window.

The first two numbers following the VDU 28 give the position of the bottom left
character within the new text window. The remaining two numbers give the
position of the character at the top right of the text window (see illustration at
the top of the next page).

Once you have created a text window, the top left position within the window
becomes 0,0. All PRINT TAB commands are relative to this new position, as
you can see if you type:

CLS[reTurn]
PRINT TAB(4,3)"The middle"[reTurn]

o7

10

15

30

text window

12

24{

A graphics window can be set up in any mode which allows the use of graphics.
Type:

MODE 129|greTurn]
VDU 24 ,160;128;1118; 1000; [reTurn]

VDU 24 is followed by the graphics positions which are at the bottom left and
top right of the new window:

1118 i

graphics window
1000

160

128

In this case graphics coordinates are used — notice the numbers are separated
by semi-colons unlike the VDU 28 command.

You can see the graphics window by typing:

03

GCOL 0,130]rerurn]
CLG|reTurn]

Although graphics are now displayed only within the window, the whole screen
is still used for text. To completely separate text and graphics we must set up
both a graphics and a text window. Create a text window below the graphics
window by typing:

VDU 28,5,31,34 ,28|ReTuRrN]

Change the background text colour to red.:

COLOUR 129]reTurn]
CLS|reTurn]

Type in some MOVE and DRAW commands. The text is displayed within the
text window, and any lines drawn only appear within the graphics window.

After a VDU 26 command the whole screen 1s used for text and graphics once
again, so return things to normal by typing:

VDU 26]reTurn]

Note that using a MODE command has the same effect as it automatically
destroys all windows.

Printing text at graphics positions

TAB is used to print characters on the screen at any text coordinate. It is
sometimes helpful to position text more accurately on the screen than PRINT
TAB allows, especially if graphics are also used.

In modes in which graphics can be used, text can be printed at graphics
coordinates after a VDU 5 command. This program gives a three dimensional
effect by printing the same message twice and slightly off-setting the second set
of characters which are printed in a different colour:

10 MODE 1

20 PRINTTAB(16,15)"H e L L o"
39 VDU 5

40 GCOL 8,1

50 MOVE 516,540

60 PRINT"H e L L o"

/@ VDU 4

Line 20 prints characters using the usual text coordinates. The VDU 5 in line
30 joins the text and graphics cursors. In line 50 MOVE is used to position the
text, which can now only be printed at graphics coordinates. Finally, the VDU 4
command returns the text cursor to normal so that PRINT TAB is usable
again.

oY

Input

Earlier you saw that you can type in information while a program is running if
the program contains an INPU'T statement:

19 MODE 135

20 PRINT "How old are you'';

300 INPUT age

40 PRINT '"'So you're ";age;" years old."”
53 PRINT "You don't look t!"

The INPUT statement in line 30 causes the computer to print a question mark,
and then wait for information to be typed at the keyboard. The computer
expects a number to be typed, because age i1s a numeric variable. Once |[return]
1s pressed, the computer stores the value typed in the variable age. If you type
text rather than a number, the computer assumes the number 1s zero.

If you want to input text, you must use a string variable 1n the INPUT
statement:

19 MODE 135

20 PRINT '"What i1s your name';

3 INPUT name$

4 PRINT "Hello ";name$;’ and how are you?"

You can use a single INPUT statement to ask for several inputs:

19 MODE 135

20 PRINT "What 1s your name and age ';
3@ INPUT name$, age

400 PRINT "Hello '";name$;''. So you are '";age;" years old."

In this case the computer will expect two inputs, one a string and one a numeric

variable. They can either be typed in separated by commas, or both can be
followed by RETURN.

The PRINT statement just before the INPUT is there to give a message to
remind you what you should type. This message can be included within the
INPUT statement:

180 MODE 135
20 INPUT "What 1s your name '';name$
38 PRINT "'Hello '";name$;''. Pleased to meet you."

INPUT ignores any spaces at the beginning of an input or anything typed after
a comma:

What i1s your name ? Nero,Emperor of Rome
Hello Nero. Pleased to meet you.

60

If you need to type in text that includes spaces at the start or may include
commas, you should use INPUT LINE rather than INPUT:

20 INPUT LINE "What 1i1s your name "';name$
This gives:

What 1s your name ? Nero,Emperor of Rome
Hello Nero,Emperor of Rome. Pleased to meet you.

GET and INKEY

In some programs, such as games, the computer needs to respond as soon as a
key 1s pressed. Programs like this use GET or INKEY rather than INPUT
statements. GET waits until a key 1s pressed before continuing:

10 MODE 135

28 PRINT "Press any key to continue”
30 chosen=GET

400 PRINT "The program has ended."

INKEY causes the computer to wait for a key to be pressed within a fixed time:

13 MODE 135

20 PRINT "Press any key to continue
33 PRINT "You have 3 seconds ontiy!"
40 chosen=INKEY (300)

50 PRINT "The program has ended."”

The timing 1s in hundredths of a second, so line 40 makes the computer wait for
a key depression for three seconds (300 hundredths of a second). If no key 1is
pressed within three seconds, the computer moves on to the next line of the
program. If a key 1s pressed, the computer immediately continues with the next
line of the program.

ASCII codes

Both GET and INKEY produce what is called the ASCII code of the depressed

key. Internally, the computer uses a number from 0 to 255 to represent each
character that it stores in its memory. This number is the character’s ASCII

code. For example, the ASCII code for A is 65, B is 66 and C is 67, so the
computer would store the word CAB as the numbers 67, 65 and 66.

The computer can give you the ASCII code for a character. For example:

PRINT ASC("A"™)|return]

prints 65. Note that ASC works with single characters only. If you want the
ASCII codes for a series of characters you should consult the table showing the
full character set in Appendix B.

bl

In the previous two programs the ASCII code 1s stored in the variable chosen. If
no key is pressed before the INKEY time limit is reached, chosen is given the
value -1.

GET or INKEY do not automatically display the character typed at the
keyboard. This is useful in programs where printing would spoil the screen

display. If you do want to print the character, use PRINT CHRS$ to convert the
ASCII code into a string:

1% MODE 135

2 PRINT "Type any character - '';
300 chosen=GET

44 PRINT CHR$(chosen)

5@ PRINT "You typed '"';CHR${chosen)

VDU followed by an ASCII code has the same effect as PRINT CHRS$. For
example, both PRINT CHR$(65) and VDU 65 would print the letter A. If you

type:
VDU 66,66 ,67reTurn]

the computer prints:
BBC

The ASCII codes for the characters start at 32. Lower codes are used to give
commands to the computer, as you have seen with VDU 26 and VDU 28.

Structured programs

In the last section you were introduced to some of the most commonly used
commands from BBC BASIC. Most of these commands dealt with the ways in
which you can communicate with the computer while a program is running,
and how you can effect the way the computer displays information on the
screen.

You have already seen that programs are much more readable if they contain
sensible variable names. Additionally, all the example programs have used
only a single statement per program line. Programs can be written to contain
more than one statement per line, provided the statements are separated by
colons:

10 MODE 135:PRINT "Type any character - ';:chosen=GET:PRINT CHR$(ch
osen) :PRINT "You typed "';CHR$(chosen)

You can imagine that a program with many multi-statement lines like this is
not easy to follow!

The next section deals with the facilities BBC BASIC offers to simplify the
development and modification of programs. So far you have only used programs

62

made up of a sequence of instructions. The computer can also repeat
instructions, or choose which of several instructions it will obey. All programs
arc built up from a combination of the three program structures sequence,

repetition and chotice. The next few sections describe how you can use these
structures in BBC BASIC.

Planning vour programming

The programs in the earlier chapters have all been fairly short, but the easiest
way to write more complex programs is to organise them differently.

Look back at the Teddy program on page 52. The program consists of a
sequence of instructions which the computer obeys in line-number order. A
longer program might contain several hundred lines, and it simpler to write if it
1s broken into small sections or procedures.

This program shows the use of procedures:

1 REM draw butterfly
19 MODE 130

20 PROCbody

50 PROCleft_wing

40 PROCright_wing
5@ END

60 DEFPROCbody

70 GCOLA,?2

883 MOVE 640,500

93 MOVE 700,500

1060 PLOT 205,640,700
118 ENDPROC

120 DEFPROCleft_wing
130 GCOL @,1

140 MOVE 200,200

150 DRAW 600,500

1600 PLOT 85,200,300
173 ENDPROC

180 DEFPROCright—_wing
190 GCOL 0,1

200 MOVE 10680 ,200
210 DRAW 680,500

2200 PLOT 85,1080 ,800
230 ENDPROC

03

The main program 1is really only lines 10 to 50:

19 MODE 2

2 PROCbody

30 PROCleft_wing
400 PROCright__wing
5@ END

Lines 20 to 40 are known as procedure calls. Each PROC tells the computer
not to obey the next line number. Instead 1t must search the program for a
DEFinition of the PROCedure (DEFPROC) with the correct procedure name,

and obey the instructions in that procedure.

For example, after line 20 the computer moves to line 60 and then executes
lines 70 to 100 which draw the butterfly’s body. Line 110 i1s the END of the
PROCedure (ENDPROC).

After carrying out the procedure, the computer returns to the line after the
procedure call to carry on with the program. Here the line following line 20 is
another procedure call. PROC/left — wing draws the buttertly’s left wing, and
the computer then executes PROCright _ wing, which draws the right wing.

The END in line 50 tells the computer that the program is finished. END is
optional in some programs, such as the Teddy program. It must be used here as
otherwise the computer will carry on and execute line 60 (and attempt to draw
the butterfly body again!

The order in which procedures appear does not matter and you can place
procedures wherever you want within a program, except at the very beginning.
Procedure names follow much the same rules as for variable names, although a
procedure name can begin with a number.

A procedure can be called more than once in a program, saving you the trouble
of repeating program lines:

10 MODE 130

280 PROCvariables

3@ PROCengine

44} END

50 DEFPROCvariables
60 scale=@.6

78 xstart=300

8@ ystart=200

90 xdoor=360

190 xdist=900

110 ydoor=500

120 ydist=300

130 xbump=30@*scale

b4

140
150
160
170
130
190
200
210
220
230
240
250
260
270
280
299

300
3104

320
5350
540
550
360
370
330
590
400
410
420
430
440

bump_rad=5@*scale

xchim=100@*scale

ychim=20@*scale

chimstart=60*scale

xdoorstart=xstart+(xdist*scale)
xwind=xdoorstart-30*scale
ywind=ystart+(ydist-3@)*scale

xwinddist=300*scale

ywinddist=20B*scale

wheel_dist=130*scale

whee _rad=100*scale

ENDPROC

DEFPROCengine

PROCrectangle(xstart,ystart xdist*scale,ydist*scale,1)
PROCrectangle(xdoorstart ,ystart ,—xdoor*scale,ydoor*scale,?)
PROCrectangle(xwind,ywind,-xwinddist ,ywinddist ,6)
PROCrectangle(xstart+chimstart,ystart+(ydist*scale) ,xchim,ychim ,1)
PROCcirc(xstart+wheel__dist,ystart wheel__rad,4)
PROCcirc(xdoorstart-wheel__dist,ystart wheel__rad,4)
PROCcirc(xstart+xbump,ystart+(ydist*scale) ,bump_rad,1)
ENDPROC

DEFPROCrectangle(x,y, xmove ,ymove ,col)

GCOL @ ,col

MOVE x,y

PLOT 97 ,xmove ,ymove

ENDPROC

DEFPROCcirc(x,y, rad,col)

GCOL @,col

MOVE x,y

PLOT 153,rad,

ENDPROC

The procedures to draw the engine use relative MOVE and DRAW commands.
PROCvariables sets the values of the variables used throughout the rest of the
program. You can change the size and position of the engine by changing the
values of scale%, xstart% and ystart%.

Information can be passed to a procedure from the main program:

1@ MODE 130

200 PROCcircle(400,300,200)

30 PROCcircle(600,600,190)

4@ PROCcircle(69@,750,50)

50 END

60 DEFPROCcircle(xcentrez, ycentre’ , radiusx)

69

/) MOVE xcentreZ,ycentre’
80 PLOT 157 ,xcentre’+radiuss,ycentrez
90 ENDPROC

The values in brackets at line 20 are called parameters. The computer takes
the parameters and stores them in the variables xcentre%, ycentre%, and
radius% in line 60 when it obeys the procedure call. It uses these variables in
the rest of the procedure to draw a circle with its centre at 400,300 and a radius
of 200.

Lines 30 and 40 demonstrate how this same procedure can be used whenever a
circle is drawn. Only the parameters need to be changed.

A procedure like PROCcircle 1s very useful because:

— 1t can be used many times in the same program with different parameters to
give different results;

— 1t can be used even if you do not know or remember how the procedure
works;

— 1t can be used in other programs.

You might use xcentre: and ycentre% to hold the coordinates of the screen
centre in a program. It seems as if these values will be lost it PROCcircle 1s used
1in the same program, because this also has variables called xcentre% and
yeentreYe:

14 MODE 130

15 xcentrez=640:ycentrez=517
20 PROCcircle(400,300 ,200)
30 PROCcircle(600,600,100)
48 PROCcircle(69@,750,54)
45 PRINT"xcentre’ remains
46 PRINT"ycentre” remains
50 END

60 DEFPROCcircle(xcentre’, ycentre’, radiuss)
78 MOVE xcentre’Z,ycentrez

80 PLOT 157 ,xcentre’+radius’%, ycentre’

90 ENDPROC

'*xcentrez
‘rycentre/

RUN the program. The values of xcentreY% and ycentre% are not affected by
PROCcircle. This 1s because any parameters passed to a procedure are
automatically local to that procedure. The xcenire%, ycentre% and radius% in
PROCcircle exist only within the procedure, and do not change the value of
variables with the same name elsewhere in the program.

66

All variables except parameters are global to a program. The whole program,
including procedures, ‘knows’ the value of the variables:

13 MODE 135

2} PROCname

30 PROCprint

40 END

50 DEFPROCname

60 INPUT'"What i1s your name "' ,name$

780 ENDPROC

80 DEFPROCprint

90 PRINT"This procedure is called PROCprint"
100 PRINT"It ‘knows' your name 1s '';name$
119 ENDPROC

r

T'he string variable name$ 1s global. It 1s set up in PROCname, but PROCprint
also ‘knows’ name$ and uses it.

The distinction between local and global variables only becomes important if a
procedure contains global variables. For example, here is a procedure which
centres text on a given line:

100 DEFPROCcentre(text$)

110 LlengthZ%Z=LEN(text$)

120 x_position%=(40-Llength%)/2
130 PRINT TAB(x_position%) text$
1400 ENDPROC

A useful procedure which might be called several times in a single program.
However, the procedure contains two global variables, length% and
x — position%. If variables of the same name are used in the program, their
values are lost after PROCcentre 1s called:

19 MODE 135

20 Length%=5

30 x_positions=15

4 PRINT"length% is '"'; length%

50 PRINT''x_positionZ is ";x_position’
600 PROCcentre("A few characters')

/@ PRINT"Length% 1s now '"'; length%

80 PRINT'"x_position% 1s now '';x_position%
9@ END

100 DEFPROCcentre(text$)

110 length%=LEN(text$)

120 x__position%=(40-Length%) /2

130 PRINT TAB(x_position#) text$

143 ENDPROC

67

You can make sure that variables within a procedure do not interfere with the
rest of the program by declaring the variables as local. Add this line to the
previous program and run it again:

195 LOCAL length”%,x_position’

This time length% and x _ position% are unchanged despite PROCcentre.
There are effectively two copies of the variables: the global values, available to
the whole program, and the local values, which exist only within PROCcentre.

PROCcentre 1s now completely 1solated, and it can be used 1in any program
without giving unexpected side-effects.

Note that variables can also be used as parameters. This brief program
contains an improvement on PROCcircle so that you can select the colour used:

1@ MODE 135

2 PROCchoose

303 MODE 130

40 PROCcircle(xchoiceZ,ychoice’ ,radius—_choice’ ,colour—_choice#)
50 END

60 DEFPROCchoose

/@ INPUT"Centre of circle " ,xchoice%,ychoiceZ

84 INPUT'"Radius '',radius_choice’

980 INPUT''Colour numper (1 to 15) " ,colour_choice%
190 ENDPROC
113 DEFPROCcircle(xcentrez,ycentre’, radius’%, colour)
120 GCOL @ ,colour”
130 MOVE xcentre’%,ycentre’
140 PLOT 157 ,XxcentreZ+radius%,ycentre
1500 ENDPROC

Throughout the rest of this chapter on BBC BASIC, procedures are used
extensively. This is because it 1s simpler to write and modify programs that are
broken into smaller sections. Some of the procedures will be specific to a
particular program, but others, such as PROCcircle, are more general-purpose.
You may like to use these procedures in programs of your own.

Functions

A function 1s a routine which takes one or more parameters and uses them to
calculate a result. BBC BASIC contains some built-in functions. Try:

PRINT LEN(""Acorn Computers'')|return}

LEN is a function which takes a string as a parameter and produces the length
of the string as the result. Now try:

PRINT SQR(9)[return]

08

SQR i1s a function taking a number as a parameter and producing its square
root as the result.

BBC BASIC allows you to set up your own functions, as this example shows:

10 MODE 135

20 PROCinput_time

30 END

49) DEFPROCinput_time

50 PRINT'"Input a time in minutes and seconds.”
60 PRINT''"'The function will convert 1t Into"

79 PRINT''seconds.”

80 INPUT'"'"'How many minutes and seconds
90 total%=FNconvert(minutesz,seconds)
100 PRINT'"That 1is "';total%;' seconds."
110 ENDPROC

120 DEFFNconvert(mins’%,secs’%)

130 =mins%*6B+secs’

' minutes’ ,seconds’

Line 90 calls the function. The computer scans the rest of the program until 1t
finds the DEFinition of the FulNction (DEFFN) at 120.

Line 130 begins with an equals sign. This tells the computer that the
calculation which follows will produce the required result, and that the function
ends on this line. The calculation is carried out, the function ends, and the
program returns to line 90 and stores the result in total%.

The function here is a trivial example, as it is simpler to just put:

90 totalZ=minutes’Z*6@+seconds’

The program below uses a much more complex function, containing statements
which are explained in the next few sections:

19 MODE 135

280 PROCinput.word

3 END

40 DEFPROCinput_—word

50 INPUT"Type 1n a word '',word$

60 PRINT''"An anagram of that word is ";FNanagram(word$)
7@ ENDPROC

80 DEFFNanagram(choice$)

90 length%Z=LEN(choice$)

190 FOR count=1 TO lLength%

118 random_tetterZ=RND(length%-1)

120 choice$=RIGHT$(choice$, length%-random_letter%)+MID$(choice$, rana
om_letter’,1)+LEFT$(choice$, ,random_letters-1)

69

1300 NEXT
1480 =choice$

Loops
FOR..NEXT

The real power of computers comes from their ability to repeat instructions.
This can transform trivial programs so that they produce very impressive
results.

The FOR..NEXT loop makes the computer repeat a set of instructions a fixed
number of times:

19 MODE 128

200 FOR count=1 TO 100
30 PRINT count

4@ NEXT count

Line 20 1s the start of the loop, with the variable count being set to 1 initially.
After printing the value of count at line 30, the computer finds the NEX'T
statement which indicates the end of the loop.

At this point count is increased by 1. Provided that count has not gone beyond
the end value of 100 the computer now repeats all the instructions again.

Line 40 can be written as just:

4 NEXT

The use of the variable name 1s optional, but if you are using many loops in a
program, including the name makes the program easier to follow.

You can change the step size so that count does not increase by 1:
20 FOR count=7 TO 5@ STEP 2
The step size can be decimal:

280 FOR count=3 T0 10 STEP 1.6

It can even be negative, although the start and end values for the loop must
also be adjusted so that the loop starts with the highest value:

28 FOR count=20 TO 1 STEP -1

Of course, the loop values can also be variables. You can experiment with loops
by adding these lines and running the program a few times:

15 INPUT "What 1s the start, end and step size " ,start,end,step
20 FOR count=start TO end STEP step

70

Here is a brief program which shows the power of the loop:

10
20
30
40
50
60
[’
80
90

MODE 2

PROCmodern__art

END

DEFPROCmodern__art

FOR count=1 TO 50
PROCcircle(RND(1279) ,RND(1023) ,RND(200) ,RND(7))
NEXT count

ENDPROC
DEFPROCcircle(xcentre’,ycentrez radiuss, colourz)

100 GCOL @ ,colour?

110 MOVE xcentre’,ycentre%

120 PLOT 157 ,xcentre’+radius’, ycentre/
1300 ENDPROC

RND produces a random whole number between 1 and the bracketed value.
Line 60 draws a random-sized circle in a random position and random colour by
calling PROCcircle with random parameters.

You may get an idea how some of the Welcome software works by running the
program again using these lines:

59
64

FOR count=7 TO 1 STEP -1
PROCcircle(64,512 ,count*5@3,count)

One FOR.. NEXT loop can be included within another. These are called nested
loops:

10
20
30
40
lli
60
0
30
90
100
114
120
130
140
150
160
170
180

MODE 7
PROCtables
END
DEFPROCtables
FOR table=1 TO 12
PRINT''TAB(8)"The ";table;" times table"'''!
FOR count=1 TO 10
PRINT count;" times ";table;" 1s '"';count*table
NEXT count
PROC1nput
NEXT table
ENDPROC
DEFPROC1Nnput
PRINT'''"'"Press any key when you're reaay for"
PRINT'TAB(2)'"the next multiplication table"
key=GET
CLS
ENDPROC

71

The main loop running from line 50 to 110 counts through the multiplication
tables from 1 to 12. The other loop from 70 to 90 nests completely within the
main loop. It multiplies the value of table by all the numbers from 1 to 10.

The effect of LIST may be altered so that it automatically produces
indentations for every FOR and NEXT pair (and certain other structures).

Type:

LISTO 7]return]
LIST[reTurn]

Notice that the start and end of the loops are in line vertically. This makes it
easier to pick out the loops and spot errors.

Delete line 90, which contains a NEXT, and LIST the program again. The start
and finish of the loop at lines 50 and 110 no longer line up. This 1s a sure sign
that a loop somewhere in the program is missing a ['OR or NEXT.

The option provided by LISTO remains in force until you reset it (using LISTO
0), execute a hard break or switch the computer off. However, leave it in force
for the next section.

REPEAT...UNTIL

Imagine a program based on the BBC quiz Mastermind. The program needs to
repeatedly ask questions until the time limit of one minute is reached. Can we

use a FOR..NEXT loop here?

FOR..NEXT loops always end as the result of a count reaching a certain value.
Here we have no idea beforehand exactly how many questions will be answered
in one minute. One person running the program may answer only three
questions, whereas another may answer a dozen.

In this case we must use a different sort of loop, the REPEAT...UNTIL loop.
This 1s a loop that ends when a condition 1s satisfied, rather than as a result of a
count. For example, many programs include a procedure that prevents the
program from rushing on until a particular key is pressed:

10 MODE 7

20 PROCwait

30 END

43 DEFPROCwait

50 PRINT TAB(@,24)"Press C to continue'
60 REPEAT

/0 key$=GET$

80 UNTIL key$="'C"

90 ENDPROC

Lines 60 to 80 REPEATedly scan the keyboard UNTIL the C is pressed. Press

72

some other key at line 70. The computer finds that key$ does not satisty the
condition at line 80, and so it executes the loop again from line 60.

The Mastermind program might look something like this:

19 MODE 7

2} PROCquiz

300 END

40 DEFPROCQuiz

50 TIME=0

60 answers=0

/B REPEAT

80 first=RND(12)

99 second=RND(12)

180 PRINT'"What 1s ";first;'" times ';second;
119 INPUT response

1200 answer=answer+

130 UNTIL TIME>=60(40

14 PRINT'"You answered ';answer;'" guestions"
150 ENDPROC

Line 50 introduces TIME, which gives the value of the computer’s internal
clock. TIME counts in hundredths of a second from the moment the computer is
switched on, or from when 1t is reset. LLine 50 sets TIME back to zero, so that it
can be used to count the minute allowed for questions.

The variable answer 1s used to count the number of answers given, and is
initially set to zero by line 60. The loop runs from 70 to 130, and repeatedly asks
random multiplication questions until TIME 1s >= (greater than or equal to)
6000 hundredths of a second, one minute.

The program has one big flaw — unlike Magnus Magnusson, it doesn’t check the
answers ! You will find out how to extend the program to do that in the next
section , so you might like to save the program before you continue.

Making choices

You have already seen that the computer can obey a series of instructions, or
repeat instructions a number of times. it can also choose whether to obey an
Iinstruction or not:

13 MODE 7

20 PROCinput_age

50 END

4) DEFPROCinput-age

50 INPUT "How old are you " ,age

6 IF age<=18 THEN PRINT'"'So you can't vote 1n elections."
7 ENDPROC

RUN the program a few times, inputting different ages. In line 60, the
computer checks the statement after the IF, and if it 1s true, it executes the
instructions after the THEN. If the statement i1s false, the computer 1ignores the

rest of the IF.. THEN and carries on to the next line.

Now add these lines to the program and run it several times, so that you are
sure you understand how IF... THEN works:

63 IF age=32 THEN PRINT'"You are the same age as me!"
66 1F age<b65 THEN PRINT'''You are below retiring age.™

The quiz program can now be extended so that it checks your answers. The new
lines are 65, 115 and 145:

10 MODE 7

20 PROCquiz

50 END

4 DEFPROCquiz

50 TIME=0

60 answers=0

65 wrong=0

/@ REPEAT

80 first=RND(12)

90 second=RND(12)

100 PRINT'"What 1s ";first;" times '"';second;
118 INPUT response

115 IF response<>first*second THEN wrong=wrong+1
120 answer=answer+1

130 UNTIL TIME>=6000

1480 PRINT'"You answered '';answer;" questions'
145 PRINT''"You had ";wrong;" wrong"

150 ENDPROC

Line 115 can be extended so that it gives the correct answer as well as counting
the wrong answers:

115 IF response<>first*second THEN wrong=wrong+1:PRINT ''No, the ans
wer is "";first*second

Where there are only two possible outcomes, such as an answer being right or
wrong, an extended form of IF.. THEN can be used:

115 IF response<>first*second THEN wrong=wrong+1:PRINT "No, the ans
wer 1s "';first*second ELSE PRINT "Well done!'

In other words, IF the response is wrong, THIN the computer gives the right
answer, ELSE it congratulates you on getting it correct.

74

The line 1s beginning to get rather long. To make the program easier to read
and understand 1t 1s better to use:

115 IF response<>first*second THEN PROCwrong ELSE PROCright

and add extra procedures at the end:

160
170
130
190
200
210
220
250

DEFPROCwrong

wrong=wrong+1

PRINT ""No, the answer 1s ";first*second
ENDPRQOC

DEFPROCright

PRINT "Well done!"

IF wrong<Z2 THEN PRINT "Keep 1t up"
ENDPROC

Conditions

A REPEAT..UNTIL loop can be set so that it ends under a variety of
conditions:

19
20
30
40
50
60
9
30
90
100
119
120
130
140
150
160
170
180
190
200
210
220
229
230
240
250

MODE 135

PROCreaction

PROCtest

PROCcomment

END

DEFPROCreaction

PRINT TAB(,8)"Press the correct key when 1t 1is"

PRINT'f lashed on the screen.”

PRINT TAB(@,13)"You have 2 seconds to respond, and you'
PRINT"can continue until you miss twice or"
PRINT"200 seconds 1s up.”

PRINT TAB(3,24)""Press any key when you're ready.'';
key=GET

ENDPROC

DEFPROCtest

CLS

mi1ssed=0

right=0

TIME=0

REPEAT

Letter=RND(26)+64
PRINTTAB(19,11)CHR$(letter)

REM VDU/ gives a bleep

VDUY

response=INKEY (200)

IF response=-1 THEN missed=missed+1

75

260 1F response=Lletter THEN right=right+]

270 UNTIL missed=Z2 OR TIME>Z2000

280 ENDPROC

290 DEFPROCcomment

300 CLS

310 PRINT"You got ";right;" right"

3200 PRINT"You missed "";missed

338 IF right>10 THEN PRINT'"A very good result."
340 IF right<4 THEN PRINT'''Rather poor."

350 ENDPROC

The loop runs from 200 to 270, and ends either when two keys are missed or 20
seconds is up. The OR can also be used in IF... THEN statements:

325 IF right>10 OR missed=@ THEN PRINT'"A very good result.”

You may want an IF..THEN statement to be executed only if several
conditions are true at the same time:

345 IF right<3 AND missed=2 THEN PRINT""Quite pathetic.”
AND can also be used to end a REPEAT...UNTIL loop:
278 UNTIL missed=Z AND right=5

Now the loop only ends after you have both missed two letters and have five
correct — not a very sensible test!

There 1s (almost) no limit to the number of conditions, for example you might
have:

273 UNTIL missed=Z2 OR TIME>Z2000 OR right>5

Multiple choices

IF.. THEN.. . ELSE 1s useful if there are only two alternative choices of action,
but often in a program there may be many more. For example, programs often
contain a menu which allows the user to choose one of a number of actions.
Here 1s the start of a drawing program which contains a menu:

10 MODE 135
2} PROCmenu
30 END
4 DEFPROCmenu

50 REPEAT

60 CLS

7@ PRINT TAB(7,5)"Do you want to:"

80 PRINT TAB(8,9)'""1 Load a picture"
90 PRINT TAB(8,12)''2 Save a picture'
100 PRINT TAB(8,15)"3 Draw a picture"

76

110 PRINT TAB(8,18)"4 End the program'

120 PRINT TAB(7,22)"Your choice, 1 to 4 ';

13 REPEAT

140 response=GET

150 UNTIL response>48 AND response<b53

160 choice=response-48

170 ON choi1ce PROCload, PROCsave, PROCdraw, PROCmake__sure
180 UNTI1L choice=4

190 ENDPROC

(This program 1s incomplete and gives an error message 1f you run it).

The loop from lines 130 to 150 only ends when a key with an ASCII code
between 48 and 53 1s pressed. These are the ASCII codes for the numbers 1 to 4
on the keyboard, so this loop screens out accidental key depressions like @ or

W.

Subtracting 48 from the ASCII code in line 160 gives a number from 1 to 4
again and line 170 uses this number to choose which of four procedures to
execute. If choice=1, the computer carries out PROCload, with choice=2, it
executes PROCsave, and so on. After carrying out the procedure the computer
continues with line 180.

The program avoids the problems that might arise with a wrong key depression
by only continuing when one of the keys 1 to 4 1s pressed. However, the loop
from lines 130 to 150 can be omitted and the problem of incorrect keys handled
by an extension of the ON... PROC statement:

120 PRINT TAB(7,22)""Your choice, 1 to 4 '';

148 response=GET

16 choice=response-48

170 ON choice PROCload, PROCsave, PROCdraw, PROCmake__sure ELSE
PROCwrong__key

The computer executes PROCwrong._key if choice does not fall in the range 1
to 4. Only a single statement can follow the ELSE, although it need not be a
PROC, for example:

170 ON choice PROClLoad, PROCsave, PROCdraw, PROCmake_sure ELSE
PRINT"Wrong key!"

ON...PROC 1is very useful, but note that it only works with numbers which
must range from one upwards in steps of one. Normally, therefore you will need
to carry out some kind of calculation in order to produce a suitable range of
values.

77

Error handling

You can reduce the time you spend correcting errors in your programs by using
procedures and sensible variable names, but it is inevitable that you will make
some mistakes. The computer i1s able to identify some types of error itself, and
gives an error message to let you know what 1s wrong.

You should always include an error-handling routine in your program. This
tells you (or anyone else using the program) as much about the error as
possible, and makes correcting it easier:

19 ON ERROR GOTO050

20 MODE 130

3 PROCmain_program

40 END

50 MODE 7

60 PRINT"Error number ";ERR;' at line ";ERL
/3 END

This program contains a major error — there 1s no procedure -called
PROCmain — program! Running the program gives this result:

Error number 29 at Line 30

The ON ERROR statement at line 10 tells the computer that if it finds an error
while it is running the program it should go to line 50. Every sort of error the
computer can detect has an error number, and the computer uses the variable
ERR to store this number. It uses ERL to store the line number at which the
error occurred.

The Reference Manual gives a full list of the error numbers and describes the
errors themselves in detail. However, you can get more information about the
error from the computer itself by including a REPORT statement in the
error-handling routine:

55 REPORT
60 PRINT " at Line ";ERL

Running the program gives:
No such FN/PROC at Line 30

This shows that the computer could not find a procedure called
PROCmain — program at line 30.

You have probably already had some experience of the computer giving error
messages. As 1t does this automatically, you may wonder why you should
bother including an error-handling routine at all. The main reason is that the
routine can restore the computer to normal. Error messages can otherwise
prove unreadable, as you will see if you RUN this program:

78

19 MODE 2

20 vbU 28,19,31,19,0
30 COLOUR 155

40 a terrible mistake
50 END

Add these lines to see the advantage of an error-trapping routine:

5 ON ERROR GOTO 60

60 MODE 7

70 REPORT

80 PRINT "at line ":ERL
9@ END

More about strings

Strings are merely groups of characters and this section deals with their
manipulation in BBC BASIC.

You can join together (concatenate) several strings simply by telling the
computer to ‘add’ one string to the end of another:

10 MODE 135

20 first$=""The start"”

30 second$=""and the end."”
40 all$=first$+second$

50 PRINT all$

Running the program gives:
The startand the end.

Other than that the composite string may not exceed 255 characters, there is
effectively no limit on the number of strings which may be joined together at
one time. You could, for example, include an additional space in the line shown
above using:

40 all$=first$+" '""+second$

Two strings can also be compared using < = and > (or any combination of the
three). The two strings are compared character by character until a difference
1s found. The string containing the character earliest in the alphabet is ‘less
than’ the other string. For example:

— PUPPY is less than SHARK because P comes before S;
— PUPPY 1s less than RAT because P comes betore R;

— PUPPY is greater than POPPY because both words begin with the letter P
and U comes after O;

79

— PUPPY 1is greater than MONKEY because P comes after M.

If you are still not sure about this, run the following program which lets you
compare pairs of strings:

19 MODE 135

20 REPEAT

33 INPUT LINE '"What i1s the first string", first$

490 INPUT LINE "What is the second string', second$

500 IF first$<second$ THEN PRINT first$;" 1s earlier alphabetically
than ' ;second$

68 IF first$=second$ THEN PRINT "'The two strings are identical.”
73 IF first$>second$ THEN PRINT first$;" is later alphabetically
than '"';second$

80 UNTIL first$="'STOP"

Can you see how to stop execution of the program 7

The computer can sort a long list of strings into alphabetic order by using string
comparisons like the above. Strictly speaking, the computer compares the
ASCII codes of the characters concerned. A lower case letter like a 1s considered
to be greater than the upper case A because the ASCII code for a 1s 97 and the
ASCII code for A 1s only 65.

LEN enables you to find out how many characters there are in a string:

18 MODE 135

2B INPUT '"What 1s your string '';choice$

30 length=LEN{(choice$)

40 PRINT choice$;" contains '";length;'" characters.”

The earlier anagram program (see page 69) used LEN to find the length of the
word supplied as input. It then rearranged the characters by combining parts of
the string in a different order. There are several functions which enable you to

copy part of a string:

19 MODE 135

2 example$=""Yel low submarine'

30 PRINT "The word 1s ";example$

400 part1$=LEFT®(example$, 4)

50 PRINT ""The leftmost 4 letters are '"';parti$
6 partZ2%=RIGHT$(example$,6)

/@ PRINT "The rightmost 6 letters are ";part’2$
80 part3$=MID$(example$,5,6)

90 PRINT "The middle 6 letters are '';part3$
100 part4$=MID$(exampled 4)

1138 PRINT "The letters from the 4th character are: '";part4$

80

LEF¥FT$ and RIGHT$ work in a similar way, by taking the chosen number of
characters from the left or right of the string respectively. MID$ is slightly
different — in hine 80 1t 1s used to extract letters beginning at the 5th letter and
going on for 6 letters. In ine 100 the second number is omitted, which causes
MID$ to extract all the characters from the 4th to the end of the string.
Needless to say the numbers in each of the examples above may be replaced by
numeric variables.

A string can be created which consists of a series of copies of another string
using STRINGS:

1% MODE 135

20 INPUT "What 1s your string ",text$

30 copy$=STRINGS(10,text$)

40 PRINT "A string containing 108 copies looks Llike this:"
50 PRINT copy$

INSTR 1s used to check for the first occurrence of one string within another, for
example:

180 MODE 135

200 INPUT LINE ""Ptease type 1n any sentence'',sentence$
30 check=INSTR(sentence$,"e")

40 PRINT "Your sentence contains '';
50 IF check>® THEN PRINT "an 'e' at position '";check ELSE PRINT "d
oes not contain an 'e'"

The variable check at line 30 contains the position within sentence$ at which
the first letter e occurs. lf sentence$ does not contain an e, check is 0. You can
also search for groups of letters using INSTR. For example replacing line 30
with:

30 check=INSTR(sentence$,''the'")
makes the program check for the string the within sentence$.

You cannot carry out arithmetic on a string variable, even if that string
variable contains only numeric characters. This can be inconvenient, so there
are two functions which enable you to change a number to a string and vice
versa:

19 MODE 135

280 INPUT ""What 1s today's date (eg 27) '';number
30 number$=STR$ (number)

&) INPUT "What month 1s 1t ";month$

50 date$=month$+" '"'+number$

60) PRINT '"Today's date 1is "';date$

STR$ in line 30 converts the numeric variable number into a string variable

31

number$. Lines 50 and 60 are included to demonstrate that the string version
can be concatenated with other strings.

VAL gives the numeric value of a string:

13 MODE 135

200 INPUT "Type i1n any mixture of numbers and letters ";mixture$
30 number=VAL(mixture$)

40 IF number>@ THEN PRINT "The string begins with the numbers '';
number

If a string begins with numeric characters, a + or — sign, VAL converts those
characters to their numeric equivalent. Note that VAL 1gnores the remainder
of the string following the first non-numeric character it discovers,for example:

PRINT VAL('"123g456") |reTurn]

produces 123.

READ, DATA and RESTORE

Many programs need some basic data before they can run, and it is often
convenient to store that data as part of the program. For example, here is a

simple quiz program that includes the questions and answers in DATA
statements:

13 MODE 135

200 PROCstart

30 PROCquiz

40 END

5@ DEFPROCstart

6 correct=0

7@ READ how_many

83 PRINT TAB(14)"A quiz game"

90 PRINTSTRINGS(40,"="")

100 ENDPROC

118 DEFPROCquiz

120 FOR question=1 TO how_many

130 READ question$,answer$

143 PRINT'question$

150 INPUT response$

160 IF response$=answer$ THEN PROCright ELSE PROCwrong
170 NEXT question

180 PRINT'"You had "';correct;" right out of '"';how_many
1900 ENDPROC

200 DEFPROCright

210 correct=correct+1

2280 IF RND(2)>1 THEN PRINT'"That's right!'" ELSE PRINT'"Well done!"

82

2500 ENDPROC

2400 DEFPROCwrong

250 PRINT'"No, the answer 1is:"

260} PRINTanswer$

270 ENDPROC

280 DATA3

290 DATAWhich century 1s this,2@th

308 DATAWhich British king had six wives , Henry VIII
310 DATAWhat 1s the seed of an oak called,Acorn

The READ statement in line 70 makes the computer search through the
program until it finds the first line beginning with the word DATA, which is
280. The computer reads the first value after the word DATA and stores it in
the variable how — many. DATA items can either be numbers or strings, and
are separated by commas.

The loop from lines 120 to 170 is carried out 3 times (the value of how — many).
Line 130 successively reads a question and answer from the DATA statements.
Each time through the loop the computer carries on reading data at the point at
which it left off, so each time it reads a different question and answer.

Any number of data items can be included in a DATA statement, up to the
maximum line length of 255 characters. Thus all the data in the program could
be confined to a single line:

280 DATA3 ,Which century 1s this, 2@0th, Which British king had six wiv
es Henry VIII,What 1s the seed of an oak called,Acorn

The main reason for breaking the data up 1s that it makes changes easier. For
similar reasons DATA lines are usually collected together although they can be
placed anywhere within the program. You can add an extra question simply by
inputting these lines:

280 DATA4
310 DATAWho won the 1984 World Cup,Italy

Running the program reveals one of the problems of using strings. The
computer only accepts as correct a response that exactly matches its stored
answer — for example, Henry the Eighth is treated as a wrong answer to
question 2!

You can use the RESTORE statement to make a program read DATA
beginning at a particular line. Add these lines to the quiz program to offer
alternative questions:

91 PRINT "Do you want (1) general knowledge questions"
92 PRINT TAB(13)'"(2) questions on animals"
93 INPUT "1 or 2" ,choice

83

94 1F choice=1 THEN RESTORE 280 ELSE RESTORE 540

50 DATAS

510 DATAWhat i1s the young of a wolf calted,wolverine
5200 DATAWhat 1s the largest mammal ,whale

53@ DATAWho killed Cock Robin,sparrow

Line 94 uses RESTORE to make the program read data beginning at line 280
or at 500, depending upon the set of questions are chosen.

Arrays

The computer is very useful for finding a particular data item in a long list or
for sorting sets of data into a particular order. For example, you might want to
sort a list of names into alphabetical order. The computer 1s quite able to do
this, but it needs to compare every name with every other name to decide upon
their order. All the names must be accessible at the same time, and it 1s easier
to compare them if they are ali stored in a list or array.

This program reads 10 names into an array and then displays any selected
name:

10 MODE 135

20 PROCset_up_array

30 PROCTIind

40 END

50 DEFPROCset_up_array

6f) DIM name$(10)

/0 FOR count=1 TO 10

880 READ name$(count)

90 NEXT count

1080 ENDPROC

113 DATA Smith,Bloggs, Hutchings,Postlethwaite,Broome
128 DATA Turner ,Dick,James , Neale,Sewell

130 DEFPROCT1ind

140 INPUT "Which name do you want (1-1@)" ,number

15@ PRINT'""Number '';number;" in the List 1s "';name${(number)
1680 ENDPROC

The DIM statement in line 60 tells the computer how many 1items there are in
the array — in this case, 10. The loop from lines 70 to 90 reads the names from
data statements and automatically stores them in the array name$, so that
named(1)1s Smith, named(2) is Bloggs, and so on. PROCfind at 130 1s included
so that you can confirm for yourself that the computer has stored the names in
the order they are given in the DATA statements.

The program can search through the array very rapidly to iind a name or set of

84

names which meet certain requirements. For example, to find all names
beginning with a particular letter, change the last few lines to:

14 INPUT "Which letter should the name begin with "' ,letter$
150 FOR count=1 TO 19

1600 name$=name$(count)

170 IF LEFT$(name$,1)=Letter$ THEN PRINT name$

180 NEXT count

190 ENDPROC

This program contains only a few names, but the computer can deal just as
easily with a list of several hundred names — the limiting factor is the
computer’'s memory capacity.

It 1s more common to deal not with a single array but with several
simultaneously. We usually make lists of data items that are in some way
associated — names and addresses, books and their authors, and so on. For
example, if names and ages are being stored we can set up two arrays. The
association between the arrays makes it easy for the computer to carry out
searches. If Broome is the fifth name in the names array, his or her age is fifth
in the age array:

name$(5)=“Broome” age(5)=27

Here the age is stored in a numeric array age() rather than a string array,
because we may want to carry out a calculation involving the age.

This program stores the names and ages of 10 people, and searches the array to
find the age of any person once you have input their surname:

19 MODE 135

20 PROCset_up__array

3@ PROCfind__age

4() END

50 DEFPROCset_up_array

600 DIM name$(10), age(10)

78 FOR count=1 TO 19

88 READ name$(count), age(count)

90 NEXT count

100 ENDPROC

110 DATA Smith,42,Bloggs,35 ,Hutchings,57

120 DATA Postlethwaite,35,Broome,49,Turner ,23
130 DATA Dick,39,James, 24 ,Neale,63,Sewell, 75
1400 DEFPROCfind_age

150 INPUT "Whose age do you want ' ,search$
160 count=1

170 REPEAT

85

180 name$=name$(count)

199 1IF name$=search$ THEN PRINT name$;'" 1s ";age(count)

20 count=count+

21} UNTIL count=11 OR name$=search$

228 IF name$<>search$ THEN PRINT search$;" is not 1in the list"
2500 ENDPROC

Only one DIM statement is needed to set up the size of both arrays, line 60. The
loop from 170 to 210 examines each name 1n the array to see if it is the one
required.

It 1s also possible to use integer arrays. In the previous program all the ages
were Integers, and could have been stored in an array age%().

Fliles

The last section showed how you can store data in arrays. One weakness of this
storage method 1s that it wastes computer memory. Every data item is stored
twice: once as part of the DATA statements within the program, and again
elsewhere in memory when the computer copies each data item into the array.

A more sensible method is to store the data completely separately from the
program, as a data file. The file can be saved onto cassette or disc (in a similar
manner to a program) and can be loaded back when required.

This program creates a file of names and telephone numbers:

1@ MODE 135

2) PROCtake_names

30 PROCmake—_f1le

40 END

50 DEFPROCtake_names

600 DIM name$(190) , tele$(100)

/@ PRINT'"Please type in the names and"

80 PRINT''telephone numbers of your friends."
90 PRINT"You can end by typing XXX when you'
100 PRINT"are asked for a name.”'!

110 count=0

120 REPEAT

130 count=count+1

1480 INPUT '"'Name" ,name$(count)

150 IF name${(count) <>"XXX'" THEN INPUT '"'Telephone number' ,tele$(count)

160 UNTIL name$(count)="XXX" OR count=100
170 ENDPROC

1840 DEFPROCmake—f1i Le
1990 CLS

200 PRINT'"What name do you want to give to"

86

210 INPUT"your data file' ,file$

220 this_one=0PENOUT(f1le$)

230 FOR number=1 TO count-1

240 PRINT#this——one name${(number) ,tele$(number)
250 NEXT number

2600 CLOSE#this_one

27 ENDPROC

o o | The program will display the message:
—\

RECORD then RETURN

when it wants to save the data file — you will also have to stop the tape
recorder 1f your equipment does not provide motor control.

PROCtake — names sets up two string arrays which can hold up to 100 names
and telephone numbers. The loop from 120 to 160 takes input from the
keyboard and stores the names and numbers in the two arrays.

PROCmake — file creates the file, which 1s given a name at line 210. Line 220
opens the file using OPENOUT so that data can be output to it.

BBC BASIC allows you to have up to five files open at the same time. Each file
is given a number by the computer so that it can distinguish between files. This
number is called the channel number. All references to the file are made via
the channel number, so it 1s vital that it i1s saved. Line 220 stores the channel
number for the file in the variable this — one.

The loop from lines 230 to 250 writes the data out to the file. Line 240 tells the
computer to print the data out via channel this — one.

The computer needs to be told that there is no more output, so line 260 closes
the channel once all the data has been printed to the file.

Note that running the program only saves the file containing the names and
telephone numbers. The program itself must be saved in the same way you
would save any other program.

A file 1s of little use unless you can read the information stored in it and the
followings program reads the names and phone numbers in the file back into
memory, and finds the phone number for any friend whose name you have
stored on the file:

13 MODE 135

2 PROCread_f1le

30 PROCfind—number

40 END

5@ DEFPROCread__file

68 DIM friend$(100), numb$(10@)

87

/@ PRINT'"What name did you give to"

83 INPUT''your data file' ,file$

90 that_one=0PENIN(f1le$)

100 count=0

" 10 REPEAT

120 count=count+1

130 INPUT#that_one,friend$(count’ ,numb$(count)
1400 UNTIL EOF#that__one

150 CLOSE #that...one

1600 ENDPROC

170 DEFPROCTIind._number

180 CLS

193 INPUT "'Whose number do you want'',name$

200 search=0

210 REPEAT

220 search=search+

230 1IF name$=friend$(search) THEN PRINTname$;" has the number
"-numb$(search)

2400 UNTIL search=count OR name$=friend$(search)
250 IF name$<>friend$(search) THEN PRINT"I can't find this name"
260 ENDPROC

PROCread —. file reads the contents of the file back into memory and stores the
names and phone numbers in two arrays friend$() and numbd().

Line 90 opens the file using OPENIN so that data can be input from it. Once
again we save the channel number, this time storing i1t in the variable
that — one.

The loop from lines 110 to 140 reads in items from the file and stores the data in
the arrays. Line 130 inputs data via the channel that — one.

The computer does not know how many data items there are in the file, so it
continues to read data until it reaches the End Of File (EOF) at line 140. As
there 1s no more data, line 150 closes the file.

All the data has now been copied from the file into the arrays friend$() and
numb$(), and PROCfind — number searches those arrays for the phone
number if you input as friend’s name.

The previous two programs are very simple and only illustrate the principles of
using files. Much more sophisticated software is available which allows you to
create and modify files of data of any nature, rather than specifically names
and phone numbers. lf you have a disc-based machine you can expand your
system to include ViewStore, a very powerful file-handling program, details of
which are available from Acorn.

88

More about graphics

In any graphics mode a fixed number of pure colours can be shown on the
screen simultaneously. Four other patterns made up from a combination of the
pure colours can also be displayed. For example, in mode 129 four pure colours
are available, and four patterns. This program displays all eight colours at the
same time by drawing seven rectangles on a background of black:

10 MODE 129

200 PROCpure

30 PROCm1xed

40 END

50 DEFPROCpure

60 FOR colour=1 TG 3

/D GCOLA,colour

80 corner=8@*colour

90 PROCrectangle(corner ,corner,corner+10@,corner+100)
100 NEXT colour

1180 ENDPROC

120 DEFPROCm1 xed

130 FOR colour=16 TO 64 STEP 16
140 GCOL colour B

150 corner=8@*((colour/16)+3)
1600 PROCrectangle(corner ,corner,corner+16@,corner+146)
178 NEXT colour

180 ENDPROC

190 DEFPROCrectangle(x,y,x1,y1)
200 MOVE x,y

210 PLOT 101,x1,y1

220 ENDPROC

PROCpure draws rectangles in the pure colours following the GCOL O
command at line 70.

PROCmixed draws rectangles using the patterns. Each time through the loop
the pattern 1s dictated by the GCOL command at line 140. The first time this is
GCOL 16,0; the next GCOL 32,0; and so on.

The patterns dictated by GCOL 16,0 and the other high-numbered GCOL
commands are not fixed, and can be changed by a VDU command. Add the
following lines to the program and run it again:

1217 REM gives yellow/black shading for GCOL 16,0
122 vbu23,2,160,80,160,80,160,80,160 ,80

The command VDU 23,2 changes the pattern produced by GCOL 16,0. The
eight numbers following describe the new pattern —in this case alternate black

89

and yellow areas. Similarly, VDU 23,3 can be used to give a new pattern
following GCOL 32,0 and VDU 23,4 changes the pattern produced by GCOL
48,0. Add these lines to get a completely new set of patterns:

123 REM gives large block red/yellow shading for GCOL 32,0
124 VDUZ23,3,60,195,60,195,60,195 ,60,195

125 REM gives black/red shading for GCOL 48,0

126 vou23,4,5,16,5,18,5,10,5,10

127 REM gives black/white shading for GCOL 64,0

128 vbU23,5,85,170,85,178,85,170,85,170

Working out which eight numbers produce which pattern is a little complex,
and the procedure varies from mode to mode — you will find it easier to use the
pattern generator utility (PFILL) from the Welcome software and which is
described at the end of this chapter. Further information about the way the
VDUZ23 command works 1s given in the Reference Manual.

PFILL lets you define your own pattern and displays the numbers needed to
recreate it. The numbers are shown in hexadecimal form (counting in 16s). Do
not worry if you are not familiar with hexadecimal. You need only put these
numbers in a suitable VDU statement to use the pattern in your own
programs. For example:

122 vbu23,2,8A0,858 ,&A0 ,8&50 ,&A0 ,&50 ,&AD ,&50

is the hexadecimal equivaalent of the previous line 122 and has the same effect.
(The & symbol is used to denote that the number following 1s in hexadecimal
notation.)

Defining your own characters

VDU 23 can also be used to define new characters for games or for specialist
programs in science or mathematics which require unusual notation. You may
recall that the symbol for p: was used as an example in the introduction to this
ouide.

90

All the normal characters are based on an 8 by 8 grid, so the uppercase A looks
like this:

Any of the characters can be redefined, but changing the upper case A to some
other shape does not help the readability of programs!

Here 1s a ‘dog’ character which has been drawn on the 8 by 8 grid:

128 64 32 16 8 4 2 1

You can redefine character 255 as the dog by typing:
VDU 238,255,17,225,34,60,60,66,129,129
To see the character, try typing:

MODE 129|retunn}
PRINT CHR$(255) [return]

Each number after VDU 23,255 describes one of the eight rows of points which
together make up the character, from top to bottom. To get this number you
must first note the points within the row which will be ‘lit’ when the figure is

91

displayed. For example, in the top row only the fourth and last points will be lit.
The number to describe this row 1s 16+ 1=17, obtained by adding the figures
above these two points.

Similarly, the second row is described by the number
128+64+32+1=225, the third row by 32+2=34, and so on.
Draw up an 8 by 8 grid and try defining a character of your own.

The Welcome software also contains a character design utility called
CHARDES which provides an automated method of changing the characters
which the computer can display. This utility is described at the end of this
chapter.

Changing the range of colours

Modes like 128 only allow two colours to be displayed on the screen at any one
time — for example, the normal colours for mode 128 are black and white.
Although there 1s no way you can use more than two colours simultaneously in
mode 128, you can change the range of colours available 1.e. instead of black
and white you could choose red and yellow.

However, the numbers used in GCOL and COLOUR commands produce
different effects in different modes and the colour displayed depends upon two
sets of information.

Colour number assignments Actual colours
in Mode 0 (128)
0 Black
1 Red
2 Green
3 Yellow
4 Blue
0 5 Magenta
6 Cyan

7 White
/8 Black/White
1 9 Red/Cyan

10 Green/Magenta
11 Yellow/Blue

12 Blue/Yellow

13 Magenta/Green
14 Cyan/Red

15 White/Black

92

The list on the right shows what are called the actual colour numbers of the 16
pure colours. This list never changes and 1s the same for every mode. The way
the colour numbers for the mode are associated with this actual colour list can
be varied by using the VDU 19 command. For example, type:

MODE 128[reTurn]
vbu 19,0,1,0,0,0|return|

This instantly changes the normal black background colour to red.

The first number after VDU 19 i1s 0, which normally produces black in mode
128. The second number refers to the actual colour number 1, which always
stands for red. The VDU 19 command effectively changes the association
between the colour numbers and the actual colours:

Colour number assignments Actual colours
in Mode 0 (128) after using
vbu19,0,1,0,0,0 0 Black
1 Red
2 Green
3 Yellow
4 Blue
0 5 Magenta
6 Cyan
7 White
8 Black/White
9 Red/Cyan
1 10 Green/Magenta
11 Yellow/Blue
12 Blue/Yellow
13 Magenta/Green
14 Cyan/Red
15 White/Black

Similarly, white can be changed to yellow by:
vdu 19,1,3,0,0,0]return]

(The last three zeroes are for future expansions and they must be included even
though they and have no effect.)

93

Colour number assignments Actual colours
in Mode 0 (128) after using
vDU192,8,1,0,0,0 and 0 Black
vbu19,1,3,0,0,0 1 Red
2 Green
3 Yellow
4 Blue
0 5 Magenta
6 Cyan
7 White
8 Black/White
9 Red/Cyan
1 10 Green/Magenta
11 Yellow/Blue
12 Blue/Yellow
13 Magenta/Green
14 Cyan/Red
15 White/Black

The same principle applies in all other modes except 7 and 135 — a full list of the
normal colour number assignments is given in Appendix A.

The teletext mode

Modes 7 and 135 are unique in the way they display text and graphics.
Commands such as COLOUR, GCOL, MOVE and DRAW do not work in these
modes. Instead, colourful displays are produced using what are known as
teletext control codes.

You may have seen teletext pages broadcast by CEEFAX or Oracle — modes 7
and 135 are teletext compatible modes.

The computer lets you produce your own teletext displays using mode 7 or 135.
These modes use very little memory, and offer a wide range of colours for
simultaneous display on-screen. The graphics are limited but effective.
Throughout the rest of this section only mode 135 will be discussed, but all
comments apply equally to mode 7.

This program demonstrates the text colours available in mode 135:

10 MODE 135

20 PRINT "This'"';CHR$(129);:'"'shows how a control code"

30 PRINT "only effects the';CHR$(130) ;' " characters"

4@ PRINT ""after it on the';CHR$(131);"same' ;CHR$(129) ;" line."

The PRINT statement at line 20 prints some text containing a series of

94

invisible control codes. Each code takes up a character position, so the words
are printed with spaces between. The codes affect the way the remaining
characters on that particular line are displayed. For example, printing
CHR$(129) before “shows” makes the computer display the text in red,
CHR$(130) causes the text after it to be printed in green, and so on.

Printing any of the ASCII codes 129 to 135 affects the colour of any characters
printed after the code on the same line. Try:

PRINT CHR$(130) “Test”[reTurn]

which prints in green. A full list of the teletext control codes 1s given in
Appendix B.

The colour of text can be changed directly from the keyboard. Hold down
and at the same time press the red function key | # |. This prints the control
code 129. Any characters you type on the same line will now be displayed in

red. Pressing and any of the function keys to] f |givesadifferent
colour for any text printed afterwards on the same line.

You can also make text flash:

PRINT CHR$(136);'"Flash';CHR$(137);"no flash";CHR$(136);"flash" [rerurn]

Flashing coloured text can be produced by using two control codes:

PRINT "Flashing"; CHR$(129) ; CHR$(136) ;"' red" [reTunn]

The codes each occupy a character position, so the words are printed separated
by two spaces.

Again, the same effects are possible using the function keys. SHIFT and {8
print the control code for flashing, SHIFT and {9 print the non-flashing code.

Double height characters can be printed using CHR$(141):

19 MODE 135
2{) PRINT CHR$(141);"Double height"
30 PRINT CHR$(141);'"Double height"

The same text must be printed on two successive lines beginning with
CHR$(141), otherwise only the top half of the letters is displayed.

Changing the background colour uses two codes:

PRINT CHR$(131); CHR$(157) [reTurn]

The first code is for yellow text. CHR$(157) tells the computer to use the
previous control code as the background colour. The net effect of the two codes
1s to give yellow text on a yellow background, as you can see if you type:

PRINT CHR$(131); CHR$(157);"He llo'"|reTuURN]

95

This 1s obviously not very useful, as the text is unreadable. To print text visibly
on a coloured background requires three control codes, two codes to change the
background colour and a third to change the colour of the text:

PRINT CHR$(131);CHR$(157);CHR$(132);"Blue on yellow' [reTuRN]

The first two codes set the yellow background and CHR$(132) is the code for
blue text.

All of these codes can be combined and incorporated into strings. If you intend
to use a particular set of codes many times within a program 1t is useful to set
up a single string containing those codes:

18 MODE 135
20 ryflash$=CHR$(131)+CHR3(157)+CHR$(129)+CHRS(136)

30 PRINT ''ryflash$;"A demonstration"
40 PRINT "of normal printing'';ryflash$;'and 1n colour"

Teletext graphics

All graphics in mode 135 are produced as the result of printing characters. If
any line contains a graphics control code, any characters other than uppercase
letters that appear after it on the same line are printed as graphics shapes.
Fach letter corresponds to a particular shape which is based on a two by three

orid for example:

a b C

A full table showing the graphics shape associated with each character,
together with the graphics control codes, 1s given in Appendix B.

The printing of any of the ASCII codes 145 to 151 causes characters on the
same line to be printed 1n their graphics form. Upper case letters are
unaffected:

PRINT CHR$(145);"Aa";CHR$(146);"Bb"; CHR$(147) ;" Cc' |RETURN]

It is easier to appreciate the effectiveness of teletext graphics when a series of
graphics characters are displayed together:

PRINT CHR$(148);STRING$(3@,'"9") [reTurN]

96

Graphics characters can be displayed in double height, on different
backgrounds, or flashing.

You can produce the graphics control codes directly from the keyboard by
pressing [ctaL | and any of the function keys{ £] to simultaneously.
Any non-upper case characters you subsequently type on the same line will be
displayed as graphics shapes.

Sound

Your computer contains a sound generator with four channels.

Two BASIC commands are available that give a wide degree of control over
sound. The SOUND command 1s used to play single notes. For example:

SOUND 1,-15,53,20[return]

plays a note on channel 1 at maximum loudness for 1 second. The command can
be summarised as:

SOUND channel,loudness,pitch,duration

The first of the four parameters after SOUND denotes the channel number.
This can be 0 to 3, with channel 0 producing noises for special effects, and
channels 1 to 3 producing musical notes. For example:

SOUND @,-15,53,20]|reTurn]

changes only the channel number from the previous example but gives a very
different effect.

The second parameter controls the loudness or amplitude of the note, and can
have any value from -15 to 16. The loudest 1s -15, -14 1s quieter and other
negative numbers give softer sounds up to 0, which is silence. Any positive
number from 1 to 16 indicates the sound i1s under the control of an ENVELOPE
command (discussed shortly).

The third number gives the pitch of the note, and can have any value from 0 to
255. Liow values produce deep notes; high values, high notes. The pitch value
has a ditterent eftect if channel number 0, the noise channel, 1s used. In this
case the range for the third parameter is only 0 to 7, producing various pitches
of noise.

The last parameter shows the duration of the sound in twentieths of a second,
and can have any value from 0 to 255. In the example, this value is 20, so the
note sounds for 1 second (20 twentieths of a second). A value of 255 produces a
continuous sound that stops only if you press [escare].

97

To play a simple tune you need only sound several notes 1n succession:

18SOUND 1,-15,97 ,10
Z2BSOUND 1,-15,185,10
34SOUND 1,-15,89,10
44SOUND 1,-15,41,10
5SOUND 1,-15,69,20

Notes can be sounded simultaneously on another channel if you add:

15SOUND 2,-15,97,10
25SOUND 2,-15,1@5,10
35SO0UND 2,-15,89,10
45SOUND 2,-15,41,10
55SOUND 2,-15,69,20

Sounds with a loudness parameter of 1 to 16 are controlled by the envelope with
the corresponding number. The envelope can affect both the pitch and
amplitude of a note. For example:

SOUND 1,-15,255,255|ReTusn]

plays a continuous loud note. Change the second parameter to 1 and the note
comes under the control of envelope 1. The ENVELOPE command requires 14

parameters:

ENVELOPE 1,1,-26,-36,-45,255,255,255,127,0,8,-127,126 ,0[return]

The number immediately atter ENVELOPE is the envelope number, which can
vary from 1 to 16. The remaining parameters control and vary the pitch and
amplitude of the note. Try the same note as before, but under the control of

envelope 1:

SOUND 1,1,255,255]reTunn]

The SOUND and ENVELOPE commands are extremely versatile and together
enable the computer to function as a music-maker superior to much more costly
synthesisers — both commands are discussed 1n detail in the Reference Manual.
In addition, the Welcome software includes an envelope editor (called
ENVELOPE) which allows you to experiment with the parameters in the
envelope command.

Changing the time

The introduction to this User Guide describes how you can use the control
panel utility to reconfigure your machine — one of the facilities offered is to
reset the date and time. You can do the same thing more directly by using the
variable TIME$ which enables you to read or alter the time.

93

For example:

PRINT TIME$[return]

displays the day, date and time. Typing:
TIME$="Tue,7 Jan 1986.09:00::00"[rerurn]

sets the time to 9.00am on Tuesday January 7th 1986. The comma, spaces, full
stop and colon characters are important as they separate the day, date and
time. Either the date or the time can be omitted, so the following are also valid:

TIME$="12:27:35"
TIME$="Fri, 6 Jun 1986"

128K BASIC

Your computer 1s equipped with a ROM-based version of BBC BASIC which, in
conjunction with the shadow memory facilities can access up to 64K of the
available 128K of random-access memory (RAM). Access to the remaining 64K
of paged RAM 1s possible using a disc-based version of BBC BASIC (referred to
as BAS128) which is available from your supplier.

Assembly language

Although programs in BBC BASIC run very quickly, some programs — such as
games — need to run even more rapidly if they are to be effective. Every time
the computer runs a program written in BASIC, it has to translate (or
interpret) each statement so that it can carry out the necessary function using
routines written in the computer’s internal language — machine code. 1t is the
translation process which slows the computer down.

Writing a program directly in machine code means the computer need not
interpret each statement, so a machine code program runs many times faster
than its BASIC equivalent. However, writing a program as a series of numbers
1s extremely difficult. Instead the program 1is written in assembly language.

The computer translates an assembly language program into machine code
using a built-in program called an assembler. The machine code translation of
the program can be saved on its own. When the computer next runs the
program it does not need to translate any of the instructions, and so execution

1s very rapid.

Assembly language is more difficult to use than BASIC, although it results in
faster and shorter programs. Fortunately, however, your computer allows you
to mix BASIC and assembly language in one program, and it is sensible to only
use assembly language in sections of a program where speed 1s vital.

99

This brief program demonstrates the use of assembly language — be sure to
type it in exactly as shown:

19 MODE 135

2 DIM demo 10
30 PZ=demo

40 L

50 LDA #67

6 JSR &FFEE
7@ RTS

80 1

90 P7=demo

100 END

Line 20 reserves 10 memory locations to hold the machine code version of the
program. P% at line 30 is used to indicate to the computer the first memory
location to be used for the machine code program.

The brackets at lines 40 and 80 indicate the beginning and end of the assembly
language section of the program. The short program from line 50 to 70 prints
the letter C on the screen. If you run the program you will see the following:

E71

E/71 A9 43 LDA #67
E/5 20 EE FF JSR &FFEE
E76 60 RTS

The computer has used the assembler to translate the assembly language
instructions into machine code. The numbers in the left-most column are the
hexadecimal memory locations where the machine code 1s stored. Kach
remaining hexadecimal number on the line is the equivalent of one assembly
language instruction.

Notice that running the program has only translated the assembly language
into machine code, and does not run the machine code program itself. To
actually execute the machine code, type:

CALL P¥%

CALL is a statement to the computer to execute a piece of machine code. It is
followed by the memory location at which the execution of the machine code is
to begin. You should {ind that the computer prints the letter C.

Once an assembly language program has been transiated by the assembler, the
machine code program can be run independently. If you use NEW, the original
program 1s removed but the machine code remains in memory, as you can
prove by typing CALL P% again. The section of memory containing the machine
code can be saved on its own and used again without any need for the original

100

program containing the assembly language instructions.

The facihty for mixing BASIC and assembly language instructions 1s a
powerful one, but any further discussion on the subject is outside the scope of
this guide. Assembly language is discussed in detail in the Reference Manual.

Utility programs

Three further utility programs are provided on the Welcome tape and its disc
equivalent.

o o | The programming utilities are located on side 2 of the tape,
—) immediately following the Welcome utilities. Load each one using the
command given within each description.

You may use the commands described below to run any of the
O programming utilities individually. Alternatively, you may use the

J menu system by typing:
*ADFS|return]
CHAIN"UTILITIES"[RreTurn]
- O O
CHARDES | | — | loading time 2 minutes

This utility allows you to alter the shapes of the letters and numbers that
appear on the screen; in other words, it allows you to design your own fonis.
The utility 1s executed by means of the command:

CHAIN"CHARDES''|reTurn]

The screen display is divided into three areas, the top showing all the current
character shapes, the central box showing an enlarged version of the
currently-selected character (together with a normal size version to its right)
and the bottom area providing a summary of the operating keys.

Characters to be redefined may be selected in one of two ways:

—~ by pressing the appropriate key on the keyboard (for standard keyboard
characters);

— by using the cursor control keys to position the cursor under one of the
characters at the top of the screen and pressing [peLete]. This method may be
used to select both standard characters and those which cannot be obtained
directly from the keyboard.

Once a character has been selected, an enlarged version is shown in the central
box. Thereafter, the cursor keys may be used to select a particular element in
the central box and depression of {rerurn] changes 1ts state (1.e. if it is currently
is white, | rerurn] switches it to black and vice versa). The effect of any change is
reflected immediately in the character to the right of the grid.

Jescare] is used to end execution of the program.

101

| copy]is used to save the current font to either tape or disc, making i1t possible to
design a number of fonts, each of which may be reloaded when required.

is used to reset the font to normal. Note that unless you use before
ending the utility, the effects of any changes to the font will remain until you
switch the computer off or execute a hard break.

ENVELOPE Lﬁ 1% loading time 1 minute
Brief mention of the BASIC ENVELOPE command has been made on page 98,
but the fact that it takes no less than 14 parameters makes it unsuitable for
description in a guide of this nature. However, KNVELOPE is a utility program
which enables you to experiment with the envelope command. It allows you to
change some or all of the various parameters and to listen to the effect that the
changes have upon the sounds generated by the computer. It may also be used
to determine the parameters necessary to generate a particular sound for
inclusion in say, a computer game.

ENVELOPE is loaded by means of the command:
CHAIN"'ENVELOPE' [ReTurN]

One loaded, ENVELOPE displays a number of boxes. Two different envelopes
may be defined by changing the content of the box marked Number; the
remaining boxes represent the settings of the fourteen parameters associated
with the currently-selected envelope:

Length — Length of each step 1/100sec
Pstepl — Change of pitch per step in 1
Pstep2 — Change of pitch per step in 2
Pstep3 — Change of pitch per step in 3
Stepsl — Number of steps in section 1
Steps2 — Number of steps in section 2
Steps3 — Number of steps in section 3
AstepA - Amplitude change in attack

AstepD — Amplitude change in decay

AstepS — Amplitude change in sustain
AstepR — Amplitude change in release
Peak — Target level at end of attack
Level — Target level at end of decay

You can move between the boxes by using < and -»; the current box will be

102

highlighted in black. To increase or decrease the value held in the current box
press T or | as required. Alternatively, you can load a number of ‘pre-set’
envelopes by pressing any of the function keys.

The effect of the current set of ENVELOPE parameters can be heard using the
keyboard, which is divided up into two ‘piano-style’ keyboards:

&
NEERR TR
2 W E R L
k\“s k\ Ry

7 7
7. - AT /éf o
E’ -' ' f/ 4 y :jf E EX 7 /j/
/% [A4 f/A 540, %% /% /J N
7] ENVELOPE 1 N ENVELOPE 2

You may press one or several keys at a time, from either one or both envelopes.

You may replace any of the preset envelopes with one of your own by pressing
[cory] followed by the number of the envelope you wish to redefine.

PFILL|, O O |loading time 1 minute

PFILL allows you to design your own colour patterns in any of the graphics
modes. It 1s executed by means of the command:

CHAIN"PFILL"[reTurN]

and you will first be asked which mode you wish to use. Choose which you
would like to use and type the number, the possibilities are :

Mode 0 (128) - 2 colours, 640 by 256 pixels.
Mode 1 (129) — 4 colours, 320 by 256 pixels.
Mode 2 (130) — 16 colours, 160 by 256 pixels.
Mode 4 (132) — 2 colours, 320 by 2566 pixels.
Mode 5 (133) — 4 colours, 160 by 256 pixels.

The other modes are unsuitable because they do not allow the display of
graphics.

103

Once the mode has been selected, a grid will be shown on the screen, with a
flashing cross in the top left-hand box; the cross can be moved around using the
cursor control keys.

The range of colours you can use to fill each box in the grid is given at the
bottom of the screen and to fill the box currently marked with a cross, simply
press the corresponding number. Kach time you fill a box the large rectangle at
the top of the screen will be filled with the current pattern from the grid. The
eight parameters required to specify the current pattern are always displayed
at the side of the grid. Note, however, that the parameters are shown in
hexadecimal notation (i.e. the values are preceded with &).

Having produced a satisfactory pattern you can note down these numbers and
use them in your own programs to fill any of the solid shapes (such as triangles,
circles or ellipses) which the computer can plot.

Down the right hand side of the screen you will see a strip of coloured blocks.
This 1s the palette — 1t allows you to change the relationship between the colour
numbers and the actual colour which is seen. To alter it type P.

The pointer by the palette will then start flashing and can be moved up and
down the strip using 7 and | . To change the appearance of a colour number
press one of the keys 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E or F; this will select the
actual colour from the sixteen which are available. To return to the grid press
[rReTURN].

104

3. Introducing VIEW

What is word processing?

Word processing has had a more profound impact on office practice than any
other application of computer technology. Consider the number and variety of
documents that are produced daily in homes and offices. Letters, memos,
membership lists, agendas, reports.... the list 1s endless.

In many cases, a document will undergo several changes before appearing in its
final printed, or written, form. Using a conventional typewriter, for example, a
rough draft may be produced, edited by hand, then retyped to cbtain a final
copy. If, perhaps at a later date, a similar document is required but with minor
modifications, the whole document will have to be retyped.

A word processor offers significant advantages over the typewriter. Text
entered on a word processor appears on the monitor screen for editing and
inspection before it is committed to paper. Corrections and modifications are
simple to implement. Characters, lines or complete paragraphs can be inserted,
deleted or moved about at will. Furthermore, text may be stored for later use
with modified details such as names and addresses. Personalised copies of a
standard letter can be produced, all identical except for individual names and
addresses. The main body of the letter need be typed only once.

The VIEW word processor

Your computer is supplied with VIEW, a powerful built-in word processor.
VIEW has established itself as one of the more popular word processors
available for use on microcomputers. Whether your particular requirements
are business or domestic, VIEW will save time and effort in the production of all
kinds of text.

Although for serious word processing a disc drive is essential, a cassette system
is adequate for initial familiarisation with word processing techniques.
Throughout the chapter, sections applying exclusively to either disc or cassette
users will be marked [28] and m ~ respectively. Similarly you will
eventually need — or need access to — a printer but this will not be assumed for
the purposes of this chapter.

Using VIEW

Before starting to use VIEW, place the function key card supplied behind the
clear plastic strip at the top of the keyboard. Ensure that FORMAT
PARAGRAPH on the card is aligned with key [#].

105

When you switch your computer on it will probably be ready to run programs in
BASIC. In order to change from BASIC to VIEW, type:

*WORD|ReTURN]

The screen will look like this.

If you are currently using screen mode 7, there will be only 40 character
positions across the screen. Mode 131, with 80 character positions, is far more
useful. We shall see later that a number of the available character positions on
each line are reserved for special purposes. To select mode 131, type:

MODE 131|reTurn}

Throughout this chapter, it will be assumed that you are using screen mode
131. Remember that modes 128 - 135 are identical to modes 0 - 7 except for the

memory that i1s available to hold your text. Note, however, that the VIEW
command screen will always show one of modes 0 - 7.

You are looking at the VIEW command screen. This is the screen from which
general commands such as SAVE will be issued. Note also that commands to
the operating system (*commands) can be issued from the VIEW command
screen. For example, you can speed up the cursor movement by typing:

*FX12 ,3]reTURN]

To return to the standard cursor speed, type:

*FX12 ,0|reTurn]

106

Another useful command is *CAT which displays a list of the files stored on a
cassette or disc. More information on operating system commands can be found
in Appendix C.

We will return to the command screen later in the chapter, but for the moment
type:

NEW [reTurn]

then press [escape] and you will switch to the text screen. [escape] always
switches, or toggles, between command and text screens. Note that any text
that you have typed in will not be affected by pressing [escarE].

Entering text

The text screen looks hike this.

' 3 . s €, T " A T ... SR TR TR 2. (

COSRESRSEREIRIFSELEIRINEIINEEINRESLRLANESAEEATIIESSEANEIREISESLEISALILNAEY

The flashing white symbol is the cursor — any text typed in will appear at the
current cursor position. Type a few lines of text without pressing |return].
Notice what happens as you reach the end of each line. If a word will not fit on
the current line, it is automatically carried over to the next line. VIEW takes
care of new lines for you ensuring that no lines are too long and that no words
are split.

All the usual keyboard functions are operative in VIEW just as in BASIC so
that if, for example, all your text appears in capitals, pressing | && | will switch
to lower case characters.

It will soon be obvious that VIEW is doing more to your text than just carrying

107

over words that will not fit on a line. VIEW always comes on with the
justification feature on, — indicated by the J in the top leit corner of the screen.
This means that all text is vertically aligned at both the left and right hand
ends of each line. In order to make all lines of text the same length, spaces are
automatically inserted between some of the words.

If automatic justification is not required, it can be switched off by holding down
| ctrL Jand pressing [6]. Try it now and you will see the J disappear from the
top of the screen. If you now type a few lines of text, all word spacing will be
1dentical but lines will be of varying lengths.

Switching justification on and off is just one of the facilities you will see labelled
on the fuction key strip. VIEW has been designed in such a way that the most
frequently used commands are obtained by pressing a function key. These
functions are the ones you can see labelled along the bottom of the key strip.
The row above consists of functions called by simultaneously pressing
and a function key, and the top row facilities require simultaneous depression
of | et |.

These are called immediate commands because they can be issued directly
from the text screen without switching to the command screen. Throughout
this chapter, immediate commands will be referenced by the key number
together with its function. For example:

[swirt]+][# | (SET MARKER)
means ‘hold down SHIFT and press function key {7’

The line of dots and asterisks along the top of the screen is called the ruler.
Amongst other things, it determines the maximum length of your lines of text.
By adjusting the ruler, you can reduce or increase the number of characters per
line for the text that follows it. Press [rerurn] a couple of times to leave some
space, then press:

| ctre |+] = | (RULER)

Another copy of the mode 131 standard ruler will appear. Use the arrow keys to
take the cursor to the leftmost end of the ruler, then erase part of the ruler by
pressing the SPACE BAR about ten times. Now enter a left margin stop >.
Press [return] to begin a new line and type in another two or three lines of text
to observe the effect of shortening the ruler. The rightmost end of the ruler can
be adusted in the same way but using the right margin stop <.

Editing a text file

The real power of a wordprocessor lies in the facility for editing and correcting
text that has already been entered. To save time, a document called GRANT1,
on which you can try out the editing facilities, is provided as part of your
Welcome soitware.

10&

Ensure that you are looking at the VIEW command screen and clear the VIEW
workspace by typing:

NEW[RETURN]

O O
—

Load the Welcome cassette into the recorder so that it 1s ready to read
side 2, reset the tape counter and wind through the tape to the end of

PFILL. Remember that you may need to use *MOTOR 1 to enable you
to control the recorder manually. Then type:

READ GRANT1|return]

The computer will search for file GRANT1 and append it to any text
currently in the VIEW workspace. If necessary, stop your cassette
recorder once loading is complete.

Insert the Welcome disc into your disc unit, then type:

LOAD GRANT1|return]

The LOAD command causes any text currently in memory to be
overwritten by the new file. If you had wanted to append GRANT1 to

to text currently in memory you could have typed:

READ GRANT1|return]

as described above.

Note that the LOAD command cannot be used to load files from cassette.

Press [escape] to switch back to the text screen.

The screen will look like this:

Preservation Society

181 Mestluyn Close
Briar Common
Sheen SH2 W]

26 February

Dear Member

Fellewing oar Asnual General Meeting last meath, I wote
to the O0P Trust wath with a view to ebtaining financial
asistince towards our proposed removation work en Sheen
Priory. I hepe members will appreciate that the Sheea
Priory project is the mast ambitieus develpment that the
Seciety has undertaken. It is particularly iaportant,
that will be required if the project is to be a
success, I received a reply from Mr Beeswing of OCP, of
which the following paragraph is an extract.

which the following paragraph 15 an extract.

109

You are looking at the first part of the document GRANT1. Hold down the
downward arrow key and watch what happens as the cursor reaches the
bottom of the screen. The VIEW text area is not limited to the screen itself. The
text area is a very large ‘page’, only a little of which is visible to you through the
screen. The screen is rather like a window which you can move (using the
arrow keys) to any part of the page you wish.

Use the downward arrow key to scroll to the end of the document. You will find
that the cursor will go no further than the last line of text. If you need to move
further down, perhaps to begin another paragraph, you must press [return] to
add extra lines.

Clearly, moving through a long document using cursor keys alone can be
somewhat tedious. Take the cursor back up the text by holding down and
pressing the up arrow key. The effect of is to make the cursor jump in
blocks of one screenful rather than one line at a time; useful for scanning

quickly through a document. Another facility for speeding up movement
around a document can be seen on function keys (TOP OF TEXT) and
(BOTTOM OF TEXT). Their purpose is self evident.

GRANTI1 contains several mistakes, each of which can be easily corrected
using VIEW. Firstly, if the letter has been delayed, the date may have to be
changed. Using a typewriter the alteration could be made with correcting fluid
but the result is unlikely to be entirely satisfactory. In fact, when a letter
contains more than one or two mistakes, the only realistic option is to retype
the letter. VIEW enables you to correct such mistakes quickly and
undetectably.

Take the cursor to the first character of the date and type:
5 March

Your new date will replace or overtype the one on the screen. A few characters
from 26 February will remain but these can be removed by moving the cursor to
the space beyond y and using [peELeTe].

As a result of changing the date, the reference in the first sentence to last
month will have to change to in January. Do this now by overtyping.

The next mistake can be seen in line 2 where the word with has been
inadvertently typed twice. It is possible to overtype one of the words with
spaces, but unless the whole line were to be retyped this would leave a large
gap between two words. Take the cursor to the w of the first with and press:

(DELETE CHARACTER)

You will see the character disappear and everything to the right of the cursor
will move over to close the gap. The cursor should now be on the letter :. Press

to delete this and twice more to delete the ¢ and the A.

110

On hine 5, a letter has been omitted from the word development. Place the
cursor on the letter p and press:

[% | INSERT CHARACTER)

Everything to the right of, and including, the cursor position will move to the
right to make an extra space. Now type o and the correction is complete.

The next mistake occurs towards the end of the paragraph where a line of text
has been omitted after the word important. Place the cursor anywhere on the
line below and press:

[% | (INSERT LINE)

All lines of text below and including that line will move down to make room for
a new line to be inserted. Take the cursor to the left hand end of the blank line
and type:

therefore, that all members contribute to the effort

The final error in this paragraph can be seen at the bottom where a line has
been typed twice. Put the cursor on the bottom line and press:

(DELETE LINE)

By this time, your paragraph will have lost its neatly formatted appearance.
Insertions and deletions will have left some lines shorter than they should be,
others will be too long. This situation can be easily remedied. Place the cursor
on the top line of the paragraph and press:

(FORMAT PARAGRAPH)

The effect of this 1s to reposition all text from the line containing the cursor
down to the end of the paragraph so that a neat format is maintained. Note
that justification should be switched on, as shown by a J at the top of the
screen, so that the paragraph will be formatted as justified text. If, after
formatting, the paragraph is unjustified, press:

| ctac |4+ | (JUSTIFICATION)

and format the paragraph again.

Having corrected the first paragraph, you should be able to correct the errors in
the remainder of GRANT1. Remember to format blocks of text as necessary,
either following each correction or after editing a complete paragraph - the end
result should be the same.

111

Your new version of GRAN'T1 will look something like this:

112

Sheaem & District Historic Buildings
Preservation Socilety

101 Nestlyn Close
Briar Cammon
Sheem SH2 4WJ

5 March

Dear Member

Following our Annual General Meeting 1n January, I wrote
to the OCP Trust with a view to obtaining financial
assistance towards our proposed renovation work on Sheem
Priory. I hope members will appreciate that the Sheem
Priory project 1is the most ambitious development that
the Society has undertaken. It 1s particularly
important, therefore, that all members contribute to
the effort that will be required i1f the project 1s to
be a success. I received a reply fram Mr Beeswing of
OCP, of which the following paragraph is an extract.

"The OCP Trust does not normally contribute towards
restoration work on buildings intended for business use.
However, we are aware that 1f the priory were not
restored, 1t could mean the loss of a building of great
historic 1interest. Consequently, an application for
assistance fraom the Trust would be favourably
considered.™ |

It would seem that Mr Beeswing 1s sympathetic to our
cause and I suggest that we forward an application to
the OCP Trust as soon as possible. I would be interested
to hear suggestions fram members as to what form such an
application should take. Suggestions should be sent to
me by the end of March, 1n time for me to present them
to the executive meeting on April 6th. A prampt reply

would be much appreciated 1n order that I might meet

that deadline.

Yours sincerely

Martyn Gilbert (secretary)

After checking that all mistakes have been corrected, you will want to save
your new document onto a cassette or a disc. Even if you intend further editing
in the same session, 1t 18 a wise precaution to save your text at regular
intervals. Then, if you should accidentally lose the document from memory
(perhaps because of a power failure), only your most recent alterations will
need to be done again.

To save your text file, first decide upon a filename. As the original document is
called GRANT1 we would probably name the second version GRANT?Z.

o o | Remove the Welcome cassette from the recorder (without rewinding it)
/ \/ and replace it with a new cassette (or ensure that you are not likely to

record over anything that you want to keep on an old cassette). Type:

SAVE GRANTZ[reTurn]

and the screen will show

RECORD then RETURN

Press RECORD on the cassette recorder, then press [return]. Once the
file has been saved, the computer will emit a bleep and the cursor will
reappear. Switch off the cassette recorder.

Remove the Welcome disc from your disc drive and replace it with a

CU> disc onto which files can be saved. Type:

SAVE GRANTZ[reTurn]

Next time you come to work on your document, you will be able to load it by
typing:

READ GRANTZ2[return] (for cassette systems) or

LOAD GRANTZ[sertunn] (for disc systems)

Block Operations

The editing facilities that you have used so far, with exception of
(REFORMAT PARAGRAPH), affect no more than one line of text at a time.
However, facilities are available that operate on complete blocks of text. You
can try these techniques by entering the song Ten Green Bottles.

Press [escape} to return to the command screen and clear the workspace by
typing:

NEW[reTurn]

Press [escape] again to switch to the text screen and type in the first verse as
shown on the next page. Note that in this case you will have to press [return] at
the end of each line because each is shorter than the standard ruler shown at
the top of the screen.

113

Ten green bottles, hanging on the wall

Ten green bottles, hanging on the wall

And 1f one green bottle should accidentatly fall
There'd be nine green bottles, hanging on the wall

You can quickly produce the entire song by using the COPY BLOCK facility.
First indicate which block of text is to be copied. This is done by setting markers
at the start and finish of the relevant block which, in this case, 1s the entire
verse.

Position the cursor on the T at the beginning of the first line then press:

[smeT]+[~] (SET MARKER)

The characters MK appear at the top left of the screen. Then press:

1 to indicate that you are setting the position of marker 1.

A white block will appear indicating its position.

Now move the cursor to the line below the end of the verse and press:

fsHiFT]+ (SET MARKER)

Press:

2 to indicate that you are setting the position of marker 2.

Another white block appears, indicating the position of the second marker.

If you press [escape] and examine the command screen header, you will see that
confirmation of the fact that you have positioned markers 1 and 2 is given by
the additional line:

Marker(s) set 1,72

Press [escape] to return to the text screen and move the cursor to the point at
which you want the copy to appear; in this case, immediately below your second
marker. Finally, to execute the copy, simply press:

114

There should now be two identical verses in the document and the screen will
look something like this.

ien green bottles, hanging on the wall
Ten green bottles, hanging on the wall
And if one green bottle should accidentally fall

There’d be nine green hottles, haagins on the wall

|
en qreea bottles, haneing on the wll

en green bottles, haaging on the wall
find if one green bettle should accidentally fall
There’d be nine green bottles, hinging on the wall

SEERSESNEERS SRR R AR RS EE IS EFRRERA R RN LSRR RS LI LRSS R R E RN RS R RN

Note that the two markers are still set, so by positioning the cursor and
pressing [copy]the verse can be reproduced as many times as needed. Complete
the song by creating ten copies of the verse then editing each one as necessary.

Another useful operation enables blocks of text to be moved from one part of a
document to another. Set markers to indicate one of the verses in your Ten
(GGreen Bottles document. Position the cursor elsewhere in the document and

press:

[smer]+] % | (MOVE BLOCK)

The marked verse will be transferred to the cursor position. You will notice
that, unlike the COPY operation, the markers are automatically cleared after
MOVE BLOCK. The reason for preserving markers after copying is to facilitate
a repeated copy as when compiling Ten Green Bottles.

The other block operation to be aware of is deletion, executed by setting
markers and pressing:

[ctrL }+[o | (DELETE BLOCK)

Any text below the deleted block moves up to close the gap.

Using CHANGE

Suppose you have typed in a document and you realise that a word has been
consistently mis-spelt. You could search for each mistake and edit it

115

independently. In a long piece of text, however, you may have to make the
same correction many times and one or two occurrences may be missed.

It 1s easier using the CHANGE facility, which can be illustrated with your Ten
(Green Bottles document.

From the command screen, type:

CHANGE/green/red/[RreTurn]

VIEW responds with a message such as
50 string(s) changed

If you switch to the text screen and examine the document you will see that all
occurrences of green have been changed to red.

You can also change the into a by typing:

CHANGE/ the/a/|return]

but the result may not be quite what you expect. The problem 1s that VIEW
has, quite rightly, identified every occurrence of the whether it occurs alone or
as part of there, they, lithe or pathetic. One way to overcome this problem is to
apply CHANGE not to the alone, but to the together with spaces before and
after. In other words, VIEW will search for / the / rather than /the/.

You can try this technique by changing a back to the, avoiding the creation of
words like hthenging and fthell. Switch back to the command screen and type:

CHANGE/ a / the /|return]

Switch to the text screen and observe the effect.

You can apply CHANGE to phrases as well as single words. For example:

CHANGE/ insect / small invertebrate segmented animal /}]return]

The slash (/) in a CHANGE command is known as a delimiter because its
function is to mark the beginning and end of a word or phrase. A space may be
used instead of a slash provided no other spaces are required in the command.
For example:

CHANGE kangaroo wal laby]return]|

As a diversion, readers may like to use CHANGE on single characters in order
to decode the following passage. Despite its appearance, only five CHANGE
operations are necessary!

Kzch ykzj, zw whk hkighw of whk woujigw gkzqon, ouj ciwy
zcwg zq hogw wo whougzndg of vigiwojq fjom homk znd
ovkjagkzg. Ykw in whk midgw of zLL whig zcwiviwy, whkjk
zjk Liwwlk ozgkg of chzjm znd pkzck.

116

The CHANGE operation is just one of a group of global operations that provide
very powerful editing facilities. Treatment of more advanced techniques is

outside the scope of this introduction and users are advised to consult the
VIEW User Guide.

More on rulers

Clear any text that you have typed in by switching to the command screen and
typing:
NEW]RreTurn]

If you are not already in mode 131 as shown at the top of the command screen,
type:

MODE 131 |reTurnN]

Press [escape] to switch to the text screen.

As you saw earlier, the state of the text ruler determines the maximum line
length for the text below it. The ruler at the top of the current screen is the
standard ruler for mode 131 and it corresponds to a line length of 74 characters.
Each mode has its own standard ruler and that for mode 135, for example,
corresponds to a line length of 34 characters.

Put another standard ruler on the screen by pressing:

| ctee |4+ 5] (RULER)

It i1s good practice always to put in a ruler before starting to enter text. This
ensures that your document is not mistakenly reformatted under a different
ruler at a later date.

Now type in the text shown below. Remember that there is no need to press
Ireturn] at the end of each line.

You may have woken this morning to the sound of a
microprocessor controlled atarm clock. The clothes that
you put on and the breakfast you ate were probably
produced under computer controt.

The layout of the text can be altered by editing the current ruler. Take the
cursor up to the ruler and change 1t to look like the one shown below.
Remember, you can use any of the usual editing facilities such as overtyping
and deleting characters.

117

Now press |return] to move the cursor from the newly edited ruler to the first
line of the text. You will notice that the ruler at the top of the screen now
matches the new current ruler. The top ruler always acts as a reminder as to
which ruler is operative 1n the current cursor position. Press:

| o | (FORMAT PARAGRAPH)

You a3y have woken this morning to the
soupd of a microprocessor controlled

alara clock. The clothes that you put on
and the breakfast you ate were probably

grndmed under computer control.
0556900 RSEESRENSEERERESISEEISIESREANSTRSSESRE I SRS ERERRE NN ERENENNNNNE

You may want the next paragraph to have a different ruler setting, in which
case a new ruler must be added to the document. You can do this by pressing:

|cr]| 5 | (RULER)

to put a standard ruler in the required position, then editing the ruler as
appropriate. Sometimes it may be more convenient to copy the current ruler
and edit that - pressing [sHiIFT]+[copY] together will generate a copy of the
current ruler at the current cursor position. Having created your new ruler,

any text typed in below it will be subject to the new margin setting, as shown
on the next page.

118

You may have woken this wmorning to the
sound of a wmicroprocessor controlled
alarm clock. The clothes that you put on
and the breakfast yeu ate were probably
praduced under computer coatrol.

S TP . iini Soiinn T T e, ..
Conputer technslony can be feund 18 all areas of life;

at hone aad at work, in shers and in offices and even
out in the street. It is chamging our seciety just as
the industrial revelutien chamged the lives of peepls

over & ceatury 290,
LEEES SE SRR RS S SRR SEEEEEERISEEE SO EISESES AT SRS R e R SRR SRR I A 40

VIEW recognises a ruler by the two dots in the left margin. They are normally
followed by a line of dots and asterisks bounded by margin stops > and <. The
left margin stop 1s omitted on standard rulers. With two exceptions, the
characters that appear between the margin stops > and < are irrelevant so it
makes sense to adopt the convention of using a line of dots as this renders the
ruler immediately recognisable to the user.

The asterisks in standard rulers are TAB stops. Their function can best be
illustrated by putting the cursor on a blank line then pressing the key
two or three times. The cursor jumps from one TAB position to the next. This
facility is particularly useful in constructing tables. Having used to move
the cursor across the screen, the eftect of pressing [peLete] may surprise you.
Instead of moving by one character position at a time, the cursor jumps back
from each TAB stop to the next. This effect is less surprising when you realise
that TAB is, in fact, an invisible character. Cursor movement, therefore, by
means of arrow keys or the [peLerg] key, is still taking place from character to
character.

The other special character that may be used in a ruler is b for bleep. This
corresponds to the bell that signals an approaching end-of-line on a typewriter.
A bleep will sound whenever you type past a position at which a b has been
inserted in the ruler.

119

Back to GRANT2Z2
Load the document GRANT?Z.
It is often necessary to carry out wholesale changes to the way in which a

document is structured and formatted. Consider the suggested changes that
have been marked up on GRANT?Z as shown below.

Sheem & District Historic Buildings
Preservation Society

101 Nestlyn Close e

Briar COmmnon ey
Sheam SHZ W] w—

Dear Mamber

Following car Annual General Meeting i1n January, I wrote
to the OCP Trust with a view to obtaining financial
assistance towards our proposed renovation work on Sheem
Priory. JI hope members wili appreciate that the Sheem
Priory project is the most ambitious development that
the Society has undertaken. It 1s particularly
important, therefore, that all members contribute to
the effort that will be required if the project is to
be a success. |1 received ram Mr Beeswlng of
OCP, of which the following paragraph 1s an extract.
e
"The | OCP Trust does not normally contribute tovards
restcation work on buildings intended for business]use.
Howevkr, we are aware that 1f the priory wery not
rested, 1t could mean the loss of a building of preat
histcric interest. Consequently, an applicationy for

assigtance from the Trust would be favogrably
consifered. "

mMove.

It would seem that Mr Beeswing 1is sympathetic to aur
cause and I suggest that we forward an application to
the OCP Trust as socon as possible. I would ke interested
to hear suggestions fram members as to what form such an
application should take. Suggestions should be sent to
me by the end of March, 1in time for me to present them
to the executive meeting on April 6th. —le—ipteipEmadeamnds

Yours sincerely

Martyn Gilbert (secretary)

' Noke -ik 18
OPC noy ey

120

Firstly, the name of the society should be centred on the page. You could do this
by inserting spaces but you would have to count characters or judge the right
position for both hines. Also, if the width of the text were to be adjusted at a
later date the positioning would no longer be accurate.

It is far easier to use one of the stored commands available in VIEW. These
commands are entered in the stored command margin to the left of the text
area. They have no immediate etfect but are simply stored until the document
1s printed, whereupon they come into operation. On this occasion you need the
stored command CE, which stands for CEntre. Its function is to centre text

according to the current ruler, so if a new ruler is inserted the relative position
of the text will still be correct.

Switch to the text screen and take the cursor to the first of the two lines to be
centred. Press:

[shiFr]+| £ | (EDIT COMMAND)

The cursor moves into the left margin. Now type:

CE|reTurn]

The command CE remains in the margin and the cursor moves back into the
text area.

Take the cursor to the second line to be centred and repeat the operation.

The stored command CE has no immediate effect, but there 1s a way to preview
the document as it would appear if it were printed. Switch to the command
screen and type:

SCREEN]RreTurN]

You should see the first part the document with no ruler and with the name of

the society centred. In order to preview the next screenful, press and release
[stier]. Once the complete document has been SCREENed, press [escare] to
return to the text screen.

The SCREEN command is a convenient way of checking on the appearance of
text before it is printed. The effects of rulers and of stored commands can be
previewed before committing anything to paper.

You can use another stored command to position the address at the top of the
letter. Take the cursor to the first line of the address and press:

[shirt]+| # | (EDIT COMMAND)

Now type:

RJ [return]

121

Enter the same stored command into the left margins of the other lines of the
address and the date, as shown below.

CE Sheen & District Historic Buildines
CE Preservation Society

R} 101 Mestlyn Close
k] Briar Coamon
R Sheen SN2 W

R] 3 Karch

Dear Nember

Follewing our Mnnual General Meeting in Jamwary, I wots
to the GCP Trust with 3 view to eobtiining fimancial
assistance towards our propesed reasvation werk em Sheen
Priory. 1 hope nesbers will appreciate that the Sheea
Priory project is the nest ambitious development that
the Society has undertaken. It is particularly
important, therefore, that all sembers contribute to
the effort that wall be required if the project is to
be a success. I received a2 reply from W Beeswing of
JCP, of which the following paragraph is an extract.

RJ stands for Right Justify. Again, its effect is not immediate, but if you
switch to the command screen and type:

SCREEN|ReTuRN]

the result should be something like this.

Rytes free 27919
Editing GRANT2
Screen mode 3

=)SCREEN

Sheea & District Historic Buildiegs
Preservation Sociely

i0] Hestlyn Close
Briar Common
Sheen SH2 4WJ

3 March

bear Nember

122

Press until the screening i1s complete, then Jescare] to return to the text
screen.

You will come across more stored commands later in this chapter. For the
moment, we will move on to the other changes to be carried out to GRANT2.

A block of text has to be moved from the first paragraph to the end of the letter.
To do this, set markers 1 and 2 to indicate the beginning and end of the block.
Unlike the example you saw in the last section, this block lies in the middle of a
paragraph so you cannot set markers on blank lines. Simply set marker 1 on
the I of line 4 and marker 2 in the space immediately following the last
character of the block. This is before the I on line 9.

Take the cursor to the point at which you want the block to appear; in this case,
two lines down from the end of the final paragraph. Press:

[smer]+[%] (MOVE BLOCK)

If, as in this instance, moving a block has destroyed the format of the text,
simply reformat the affected paragraphs by positioning the cursor on the first
line and pressing:

(FORMAT PARAGRAPH)

The next alteration to GRANTZ2 involves paragraph two, which has to be
reformatted to a narrower text width. This involves inserting and editing a new
ruler above the relevant paragraph. As you have seen, however, each ruler
affects all the text below it until the occurrence of the next ruler. As we only
want one paragraph to be reformatted, it will be necessary to insert a new ruler
below the paragraph as well as above it.

Position the cursor above the first line of the paragraph and press:

[srueT | +[copy]

to obtain a copy of the current ruler. Now put another copy of the current ruler
below the last line of the paragraph. The first of these two rulers can now be
edited to obtain the required format.

123

Note that no account has been taken of the tab positions (*) as tabs are not be
used in this particular document. For documents in which tabulation 1s
required the positions of the asterisks must be adjusted accordingly.

Now all that remains is to position the cursor on the first line of the paragraph

and press to reformat.

Bear Nember

Following our Annual General Meeting in January, I wrote
to the OCP Trust with a view te obtainine financial
assistance towards our proposed removation werk on Sheea
Priory., I received a reply from W Beeswing of OCP, of
which the following parasraph 15 an extract.

' T S . SR . SR . J ... {

"The OCP Trust does not normally contribute
towards restoration werk on buildings 1ntended
for business use, However, we are aware that
if the priory were not restered, it could mean
the loss of a buiiding of great Mistoric
interest, C[onsequeatly, an application for
assistance from the Trust weuld be favourably
considered,”

It would seem that W Beeswing is sympathetic to our
cause and I suggest that we forward an application te
the OCP Trust as soon as possible. I would be interested
to hear suggestions from members as to what form such an

Another alteration to GRANT?Z2 involves deleting the final sentence of what is
now paragraph three. Position the cursor on the letter A at the beginning of the
sentence and press:

(DELETE END OF LINE)

The following two lines of text can be deleted by positioning the cursor and
pressing:

(DELETE LINE)

Finally, 1t appears that OCP should have been typed as OPC. Carry this out
using CHANGE.

Having completed your second edit, the document will be ready to save again
onto a cassette or a disc. If you choose to keep the same name that appears at
the top of the command screen, then all that is necessary is to type:

SAVE[Rreturn]

VIEW will assume that you require the filename currently shown.

Note that the filename on the command screen can be changed at any time. For
example, to change the filename to FRED type:

NAME FRED [reTurn]

124

[t 1s not always wise to save an edited document under its former name. If you
are using a disc system, the new file will overwrite any other file with the same
name. In many cases, this is perfectly acceptable but you may decide you want
to keep older versions, perhaps as a security measure. If this is the case, then it
makes sense to use a numbering system such as GRANT1, GRANTZ2, GRANTS3
and so on. Never include spaces in your filenames. Everything following a space

will be ingored so that GRANT 1, GRANT 2 and GRANT 3 will be treated as
the same name.

Printing from VIEW

When instructed to print, VIEW sends codes to a printer driver program
which controls the operation of the printer. The driver program contained in
VIEW 1s perfectly adequate for straightforward printing and will operate most
types of printer although it is possible to use more sophisticated drivers. We will
come to these later but for the moment it is assumed that you are using the
default printer driver contained in VIEW.

There are two ways to print. If you want to print a copy of the file that is
currently in the computer’s memory, all that is necessary is to switch to the
command screen and type:

PRINT[ReTurN]

Alternatively, you can print from a file held on disc or cassette without
affecting the text currently in memory. To print a file called GRANTS3, for
example, type:

PRINT GRANT3]ReTurN]

Try printing a few pieces of text to get used to the method. Remember, if you
want to see a simulated print-out on the screen before committing anything to
paper you can SCREEN a file as described on page 121.

If you print a document that carries over to more than one page, VIEW
assumes a page length of 66 lines of text. If this is inappropriate, it can be
changed by entering a stored command at the beginning of the document.
Press:

[sart]+] % | (EDIT COMMAND)

The cursor moves into the left margin. Now type:

PL]reTurN]

The command PL remains in the margin and the cursor moves back into the
text area. Now type:

50| reTurn]

This number specifies the number of lines in the new page length.

125

Subsequent PRINT or SCREEN operations on that file will now result in a page
length of 50 lines.

Sometimes page breaks occur at inconvenient points such as in the body of a
table or immediately following a heading. This may be remedied using the
stored command PE — which stands for Page Eject. The commmand is placed in
the margin wherever the printer is required to move on to a new page. It
overrides the automatic page breaks specified in the PL stored command.

On pagel2lyou were introduced to the stored commands CE and RJ. Now you
can add PL and PE to the list. These commands serve to illustrate the way in
which stored commands operate in VIEW and they are sufficient for most
general printing tasks. However, there are many more stored commands

available in VIEW and users are referred to Appendix I and the VIEW User
Guide.

Printer drivers

A wide range of printers is available, some offering sophisticated features such
as bold type, underlining and sub-scripts. You may have noticed the labels
HIGHLIGHT 1 and HIGHLIGHT 2 on the function key strip. They are used to
insert codes that identify words to be printed in a special way, normally
underlined or printed in bold type. In order to utilise these special teatures each
kind of printer uses a different set of codes and requires a tailor-made printer
driver.

The Printer Driver Generator 1s a program for producing printer drivers to meet
the needs of particular printers. Once generated, a driver can be saved on disc
or cassette to be called up whenever required. The generator is available from
your dealer.

Additional features of VIEW

This concludes the introduction to word processing using VIEW. By now you
should have an understanding of what word processing is all about and a
working knowledge of VIEW. As you will probably appreciate, we have been
able to describe only the basic features of the word processor. Given below are

outlines of some of the more advanced features of VIEW, operational details of
which can be found in the VIEW User Guide.

Macros

A macro is a piece of text that can be printed by entering a unique name in the
margin, rather like a stored command. The macro may be printed as often as
required merely by repeating the name in the margin. A macro can be modified
so that each time it 1s called, different words or phrases are inserted at
particular positions.

126

A common use of macros is in the printing of personalised standard letters as
mentioned in the introduction to this chapter. The letter can be printed as
many times as needed and each copy will include a different name and address.

Global editing

You have used the CHANGE command to alter words throughout a document.
Similar operations include SEARCH, which will locate items of text and
REPLACE which performs the same job as CHANGE but gives you the option

to accept or reject each alteration.

Special symbols can be used which enable all of these facilities to operate on
invisible characters such as tabs and carriage returns. In addition there is a
wildcard symbol which can be used, for example, to search for all occurrences
of a word even though some occurrences may be mis-spelt.

Further printing facilities

Additional printing facilities include the use of headers and footers. They can
be used to print a document with, for example, automatic page numbering and
a running title. The illustration below shows one effect that can be achieved by
differentiating between odd and even numbered pages.

r_
CHAPTER 1 Y CHAPTER 1

127

4. Introducing ViewSheet

What is a Spreadsheet?

Imagine a huge sheet of paper marked out in rectangles by a series of
horizontal and vertical lines. Each of the boxes so formed may be individually
identified by reference to the appropriate column and row. The columns are

labelled A, B, C, and so on whereas the rows are numbered from 1 to 255. Thus
an 1individual box, or slot, might be called A2 or B4 or F99.

In the diagram below, slot C4 has been shaded:

A spreadsheet program simulates such a sheet of paper and allows you to enter,
into any slot, one of three things:

- A label, that is a piece of text
— A number, such as 7 or 1234.56

— A formula containing references to other slots

It is the facility for entering formulae that makes the spreadsheet such a
powerful tool. Once a spreadsheet has been set up, any new values entered can
be automatically be related to the items already recorded.

For example, you might enter the number 27 into slot B3 and 19 into B4. If you
were to put the formula B3-B4 into the slot B5, the result would be as shown
opposite.

128

1

N I
; P e A

4 19

5 8

i .

3| SALES | 27

4)1 COSTS! 19

5 |PROFITS 8

The contents of any slot may be changed and the effects of such changes can be

observed over the rest of the sheet. In our simple example, changing the
COSTS in B4 will automatically adjust the PROFITS in B5.

This is obviously a trivial example, but it points to the value of spreadsheets in
investigating ‘what if..?’ type questions such as:

“If I borrow £1000 over three years and the interest rate is held at 13.5% my
payments will be £39.03 but if I increase my payment to £45 I can.....”

Calculations that would be very repetitive if carried out by conventional means
are achieved with no greater effort than entering the data on which they are
based. Thus spreadsheets are widely used in industry and commerce for
financial modelling and forecasting. At home and in small businesses, they are
used for budgeting and aeccounts.

ViewSheet

Your BBC Microcomputer has a powerful built-in spreadsheet program,
ViewSheet. It allows you to set up spreadsheet displays, vary them at will,

129

save them onto disc or cassette, retrieve them, and print them in whole or in
part.

Furthermore, ViewSheet 1is compatible with VIEW. In other words,
spreadsheets can be incorporated into word processed text, edited as required,
and printed as one file. If you have read the Word Processing chapter you will
notice that there are many similarities between the operational details of
VIEW and ViewSheet. Both are members of the View Family from Acornsoft.

Using ViewSheet

Before starting to use ViewSheet, place the function key card under the clear
plastic strip at the top of the keyboard. Ensure that DELETE CHARACTER is
aligned with key 19.

When you switch your computer on, it will be ready to receive BASIC
programs. In order to change from BASIC to ViewSheet, type:

*SHEET | reTurn]

The screen will look like this.

viewSheet

Bytes free 27662
Editing No File
Screen mode 7

=D

In screen mode 7, there are only 40 character positions across the screen. As in
VIEW, mode 131 with its 80 character positions is far more useful. To select
mode 131, type:

MODE 131|return]

Throughout this chapter, it will be assumed that you are using screen mode 131

although the command screen will always show the mode number in the range
0-17.

130

ViewSheet 1s now displaying the command screen. Press [escape | and you will
switch to the sheet screen. Pressing [escare] always switches, or toggles,
between the command screen and the sheet screen. Note that the contents of
your spreadsheet are not affected by pressing [escare].

Moving around the spreadsheet

Now the screen looks like this.

R SLOT=AL
COMTENTS=¢Blanke

What you are looking at is the top left-hand corner of the spreadsheet. Along
the top you will see the letters A to I and down the side the numbers 1 to 19.
Thus, as mentioned earlier, any slot may be uniquely referenced by a
letter/number pair such as Al or E15.

The white rectangle in slot Al is the cursor. One of its functions is to provide a
means of moving about within the spreadsheet so that you are not permanently
looking at the top left-hand corner. Press the downward arrow key several
times to take the cursor down the screen and notice what happens when it
reaches the bottom. In effect, you are moving the whole screen down the sheet
one step at a time. If you were to carry on long enough, you would reach the
bottom of the sheet as shown by row 255.

You can move across the sheet in the same way, using the right and left arrow
keys to move the cursor. The columns are labelled A to Z followed by AA to AZ
and so on, through to the 255th column which is labelled IU.

In order to move around the spreadsheet more quickly, you can use the
auto-repeat facility. Press one of the arrow keys and hold it down for a few

131

seconds. The cursor will jump quickly from slot to slot as though you were
pressing the key repeatedly.

Another way to speed up cursor movement is to hold down as you press
the arrow key. Instead of moving at a rate of one slot at a time, the cursor now

jamps in blocks equivalent to one screenful. Use this method now to take the
cursor back to slot Al.

When in the sheet screen the current cursor position 1s always shown at the top
of the screen. It should now read:

SLOT=A1

but it will change as you move the cursor around. Also shown are the contents
of the slot. At the moment this will appear as:

CONTENTS=*BLANK*

Entering information

Make sure the cursor is on slot Al then type:

RENT|ReTURN]

You will see the word REN'T appear in the current cursor position. Now move
the cursor down to A2 and type:

RATES (do not press [return])

The word appears near the top of the screen but not, as yet, in the spreadsheet.
The word RATES is on the editing line. It will stay there until you press [reTurn]
and in the meantime you can edit it or delete it (using the |peLete] key) without
affecting the contents of the sheet. The editing line 1s particularly usetul when
making a complex entry that you want to check before committing it to the
sheet. We will look at editing facilities later in the chapter.

Press:

[reTURN]

to transfer RATES to the sheet, then enter FUEL into slot A3 and TOTAL into
slot A5. A4 will be left blank to aid clarity of presentation.

RENT
RATES
FUEL

TOTAL

So far we have been entering words or labels into the sheet. Naturally they
cannot be used in calculations but labels are necessary as headings or
explanations. The letter L at the top of the screen shows that the slot currently
indicated by the cursor contains a label.

132

Now take the cursor to slot B1 then type:

126 reTurn]

You have now entered a value into B1. A value may take the form of a number
or or a formula — anything that can be used in calculation. Whilst the cursor is

on B1l, you should see the letter V at the top of the screen. This indicates that
ViewSheet recognises the contents of B1 as a value rather than a label.

Now enter, say, 37 and 66 into B2 and B3 respectively. Your spreadsheet now
contains:

RENT 126
RATES 37
FUEL 66
TOTAL

Take the cursor to B5 and enter:

B1+B2+B3|reTURN]

The number 229 should appear as the total in slot B5. Note, however, that the

CONTENTS= line at the top of the screen still shows the formula B1+B2+B3. We
can see, then, that there are two pieces of information associated with a slot
containing a formula. Firstly there 1s the formula itself — in this case
B1+B2+B3; secondly there 1s the number obtained by evaluating the formula
—1in this case 229. When we look at a spreadsheet, all values appear as numbers
whether entered directly or calculated from a fomula. However, the CONTENTS=
line always shows how the number in a particular slot was originated.

If at this point slot B5 does not hold the total, the chances are that you have
mis-typed the formula. Each of the variables used in a formula must be a slot
reference such as Bl or AC123. If ViewSheet cannot recognise it as a slot
reference it will assume the entry to be a label and will reproduce it in the slot.

Below are some examples of formulae that could be used in ViewSheet. Note
that multiplication and division are carried out using * and /.

(4xA1)/B7 5*%(C3-B3) (D1+ET+F1)/(H8*H9)

As mentioned earlier, the real power of ViewSheet lies in the ability to
investigate the effects of changing one or more of the values held. Simply
overwriting the contents of the slot is often the most convenient method of
making such changes. Take the cursor to B1 and type:

131 reTurn|

The number 131 will overwrite the existing contents of slot B1.

Furthermore, the contents of B5 will automatically adjust to show the new
total.

133

At this point, you may wish to experiment by entering values and using them
in formulae. Clearly, the example we have looked at is particularly simple. In
the next section, we will examine a more realistic spreadsheet that has already
been created and discover some of the ways in which it might be used.

Using a spreadsheet

An example spreadsheet is provided with the Welcome software.

((e)) If you have used the VIEW file GRANT1 your cassette should already
be wound to the appropriate point.

Press Jescare] to switch to the command screen then type:

LOAD ACCOUNT [reTurn]

The computer will search for the file called ACCOUNT and will load it
into the ViewSheet workspace. Once loading i1s complete stop the
cassette recorder.

(d) Press Jescare] to switch to the command screen then type:

LOAD ACCOUNT|[ReTURN]

The computer will load a file called ACCOUNT into the ViewSheet
workspace.

Press [escare] to switch back to the sheet sereen. The screen will look like this:

8 5L07=Al
CONTENTS=eBlanks

........ B.......Co bbbl

Sheem L District H.B.P. Society

lgan paynents
% printing
18 s'tary expenses
i1 t’syrer expenses
room hire

ACCOUNT shows the Sheem Preservation Group’s annual accounts for the
year 1985/86. The full sheet i1s shown opposite.

134

0072161

007089
S5¢°tdy
00°tLL

Y — — —— W —

057£8¢
097°9%S

STYIOL

D-tt-tl-Zaltl-tnlzuilnil_-Qlanit-lumlr-alcllh-_._-t_.__._-Htl.._---m----f-u_--tailn..m-.-:--:m.—----Q--...—-Un-.i-.-m-.--.:-m

00718t

007 T¢CL
00°0

0$°LE
06°¢C

ek)

00°801
00°0
00°0
06°LT

dild

GG 9T~

NVl

00°G7T
00785

@@Imwmﬁ_

G"9vt 0L°96C
05°%v0F G2°ZWt
00700t 00°SLC
00°0 00°0
00°¥9 SC°TT
06°0F 00799
085 56 TGP
05771 0670
0070 00°0
0070 00°0
000 0070
6 °GY GG SY
L0 d3s

0T SAUNOONY

0c"60T 91718
0G°CLT OS7LET
00°88 00°LS
0070 00°0

00°0 06°¢T

— — i S S ———r—— e p—— .l —_r—

Qv " 291

00°%2C

00°0
00° G2
00°0

0S¢l 00°0
00°0 00°0
YA 6L°01
0070 0070

. ——— e B T —— e — i el g —

A39100S *d°€°H

10TI3STI % UPSUS

00°0Ct
00°0%9
0G°LE
00°0

A Bl il B W —

LO°LY

0G°LYVI

kel W o e ik ke el EY

00°Gt1
0070
06°ZT
00°0

— e el e Wk Y

e pp— e —

12303

s3d1o031

A e m—— e E—

SITY
sasuxIxa
sosUuodxNS

sjuauied

|||||||| 9z
38U Gz
—m—m———— 2"
e300y €T
........ 2z
sIsquew T¢*
S,9UuuAmM 0Z"
jo ofes 6T
jo aTes gT"
|||||||| LT
SIATADTL 9T
........ GT*
Te3oy 1
........ €T
WoO T 2T

— —— e B B Mk -

SUNIWAYA

w* % & ¥ $ & E B

135

The top half of the sheet shows the society’s monthly expenditure throughout
the year with monthly totals shown in row 14. To the right (column O) is a list
of annual totals for each item. The lower halt of the sheet shows a
corresponding table of receipts and the bottom row (25) gives a net total for
each month. The net total for the whole year i1s given in slot 025.

Most of the labels on the left of the sheet occupy two slots. In this sheet, all slots
have been set to a width of eight characters so some abbreviation of labels has
been necessary. This could have been avoided by placing the labels in a
‘window’ of, say, fifteen characters in width. However, the techniques of
extending slots and setting windows are outside the scope of this guide and
users are advised to consult the ViewSheet User Guide.

Initially, the cursor will rest in slot Al. Use the downward arrow key to take
the cursor down column A. The L that appears in the top left corner of the
screen indicates that the contents of these slots are labels. Note that the labels
appear In the CONTENTS= line at the top of the screen.

Now take the cursor to C8. At the top of the screen, the L changes to a V,
indicating that this slot contains a value.

Move the cursor down to C14 and look at the CONTENTS= line. This slot contains
a formula giving the total payments for April. In fact, C8C12 specifies a range

of slots, and when used as a slot formula it means the total of all the slot
contents in the range, i.e. C8+C9+C10+C11+C12.

This 1s an example of a sheet that might be used by a small business for
calculating the weekly wages of employees and the total wage bill. This type of
application is ideally suited to a spreadsheet as it often involves extensive use of
calculations, particularly if the workforce is large.

Spend a few minutes exploring the sheet using the techniques described earlier
for cursor movement. The current values should be the same as those shown in
the 1llustration on the previous page.

You will see that the label in K2 includes single quotes. It is necessary in this

case to include quotes — or any other character that could not be part of a
formula — in order to indicate that 1985-86 1s intended to be a label. Otherwise,
ViewSheet will subtract 86 from 1985 and place the result in K2!

When you are ready to return to the top left of the sheet, press:
(GO TO SLOT)

then enter the slot reference:

A1[return]

This 1s a useful facility for moving quickly to anywhere on the sheet provided
an appropriate slot reference is known.

136

Take the cursor to C12 showing the payment for room hire in April. Change the
value 1n this slot to, say, 10.25. Almost immediately, the value 1n slot C14
adjusts to give the new total payments for April. All the other values that are
dependant on C12 will also have been adjusted or recalculated. This may be
verified by inspecting, for example, the net total in C25 or the final total in 025,
and comparing these values with the original ones as shown on page 135.

It 1s 1mportant to remember the way in which ViewSheet recalculates.
Recalculation takes place from left to right along each succeeding row from top
to bottom. Thus if a formula contains references to slots that appear later in the
sheet, it may not automatically recalculate when those values change. In this
case, 1t 1s necessary to press:

[swer]+] » | (RECALCULATE)
or simply | 1aB |, which has the same effect.

One other facility is worth noting before you go on to create a spreadsheet. In a
sheet like ACCOUNT, it is all to easy to inadvertantly omit a row or column
and the omission might not even be noticed until the sheet is virtually
complete.

In ACCOUNT, for example, a row of receipts from a council grant may have
been missed out. Place the cursor anywhere on row 21 and press:

[smer]+[%] INSERT ROW)

Everything below the cursor will be shifted down to accomodate a new row.
Place the label council into slot A21 and grant into B21.

Take the cursor to slot C21 and enter a value, say, 75. The first thing you will
notice is that, unlike the other values on the sheet, this one i1s not displayed to 2
decimal places. Ignore this for the moment. You will see later in the chapter
how a slot may be formatted to display a specified number of decimal places.

The interesting point to note is that the value in C24 has recalculated to display
the new total, even though the original formula in C23 did not allow for the new
row. This is because ViewSheet has automatically adjusted the range specified
in C24 to take account of the new row. This may be verified by placing the
cursor on C24 and looking at the CONTENTS= line. Originally i1t contained
C18C21, now 1t contains C18C22.

Similarly, columns can be inserted by pressing:

[saer]+[A] ANSERT COLUMN)

Before finishing with ACCOUNT, experiment with INSERT ROW and
INSERT COLUMN as well as the complementary functions given by:

[ctee [+ 7 | (DELETE COLUMN) and

137

[ctae J+] = | (DELETE ROW)

You will find that initially you are unable to delete rows and columns. This is
because of a protection feature which has to be switched off. Press Jescare] to
switch to the command screen then type:

PROTECT OFF|reTunn]

You will see the message

Protection off

Press [escape] to return to the sheet screen and you will be able to delete rows
and columns. It is good practice to switch protection back on once the required
deletion has been carried out. This is done using by typing:

PROTECT ON|[ReTurn]

from the command screen.

Creating a Spreadsheet

Having examined a spreadsheet and tried some ViewSheet techniques you are
now going to create a spreadsheet from scratch. The ‘pen and paper’ equivalent
of the spreadsheet is shown below.

Weekly wages week 2]
normal hours = L0 ovtime rate = [, 7§
EMPLOY HOURS HOURS HOURS HOURLY GROSS
NAME TOTAL NORMAL OVT IME PAY PAY
Bultey o 40 0 .50 [80.00
Jawes 3y 3y v, 4.50 153.00
Lewis 4 +o & 5.00 270.00
Mok 43 e 3 £50 203.42
oo 3% 3% O 5.25 199.50
Ty lew 52 4o |12 525 32025
rois 265 232 23 27.00 132437

In our example, wages are calculated on the basis of a ‘normal’ working week of
40 hours. Any hours worked in excess of 40 qualify for the overtime rate, in this
case 1.75 times the basic rate of pay.

138

The top row of the sheet gives a title and the week number. The next row
specifies the number of hours in a normal working week along with the current
overtime rate.

The remainder of the sheet consists of a table with six columns. Column 1 lists
the names of the employees and column 2 lists the hours worked by each one.
Columns 3 and 4 split the hours worked into normal (40 or less) and overtime.
Column 5 lists the hourly rate of pay for each employee and the final column
shows the gross pay. At the foot of each column is a total so the figure at the
foot of column 6 shows the total wage bill for the firm.

Entering the spreadsheet

From the command screen, select mode 131 then clear the workspace using
NEW.

Press {escape] to switch to the sheet screen.

The cursor should be in slot Al. This seems to be an appropriate slot for the title
so type:

Week Ly [reTurn]

Remember to press | @&] if all your letters are appearing as capitals.

This spreadsheet uses a slot width of seven characters. Although you can enter
up to 239 characters in one slot, only the first seven will be displayed. The rest
of the title will have to go into B1. Take the cursor into B1 and type:

wages|[RreTurn]

In the same way, enter the underline characters into slots A2 and BZ2.
Now enter week in E1 and 21 in F1

You could fit the whole of week 21 into one slot, but it would then be treated as
a label. As the same spreadsheet would probably be used for every other week
of the year, it is better to enter 21 as a value so that it is easier to change.

Now complete row 4 by entering:
normal into A4

hours = 1nto B4
40 into C4
ovtime 1nto D4
rate = 1nto E4

1.75 into F4

By now you will have noticed that the spacing of your entries leaves much to be
desired. Labels, such as week and normal, are automatically ranged left
whereas values, like 40 and 1.75, are ranged right.

139

Put the cursor back into K1 and press

[sher]+[%] (JUSTIFY LABEL)

The label in E1 moves from the left of the slot to the right. You may like to do
the same to slots Al, A2, A4 and D4 in order to improve the spacing.

To further improve the spacing you need to move the values in F1, C4 and F4
from the right to the left of their respective slots. For reasons which will become
clear later, the method for justifying values is different to that used for labels.

Place the cursor in one of the three slots mentioned above and press:
(EDIT SLOT FORMAT)
At the top of the screen you will see:

Format?
FRM

Type: L|Return]

The number will now be ranged left. Repeat the procedure for the remaining
two slots.

The screen should now look something like this.

¥ SLOT=F4
CONTENTS=1.73

Now enter the column headings into columns A to F of rows 7 and 8. To
maintain the style of the written spreadsheet this is best done with caps lock
on.

140

Before entering the list of names in column A, press:

| ctae |+ o | (AUTO ENTRY)

The letter R appears at the top left of the screen.
Press it again and the R changes to D.
Press it again and the D disappears.

R stands for Right and D stands for Down. What AUTO ENTRY does is to save
you the trouble of pressing the arrow keys every time you want to move on to
an adjacent slot. It is useful when entering a long row or column of items. Just
press [return] and the cursor moves on to the next slot automatically.

To enter the list of names you need the D (Down) operation. You can carry on to
enter the lines in A15 and A17 and the label TOTALS in Al®6.

Whilst AUTO ENTRY 1s switched on, you can use it to enter the HOURS
TOTAL list in column B but for the moment do not make any entries below
B14.

Switch AUTO ENTRY off by pressing:
| ctre }+| v | (AUTO ENTRY)

You will have noticed that the items in column B are not aligned with the
heading. As mentioned earlier, labels automatically range left whereas values
range right. Columns of figures are best left ranged right, so the solution is to
justify the labels that comprise the column heading.

Position the cursor in B7 and press:
[stirT]+] %] (JUSTIFY LABEL)
Repeat for the other half of the heading, in slot BS.

The spreadsheet will look neater if all the headings range right. Repeat the
JUSTIFY procedure for all the labels in rows 7 and 8.

Each item in row 15 is identical. It would not be too much trouble to type the
label ‘— — — — — — ' six times, but there is an easier way that is particularly useful
for large spreadsheets. Press:

(REPLICATE)

The system responds with a prompt.:
From - To?

Type:

A15 - B15F15[reTunn]

This replicates the contents of A15 into columns B to F of row 15. As you have

141

seen, the specification of a range, like B15F15, is useful for a variety of
operations in ViewSheet.

Repeat this procedure to enter row 17.

Your spreadsheet should now look like this.

LA SLOT=AL?
CONTENTS=

ovtime rate = 1.7%

7 ENPLOY HOURS HOURS HOURS HOURLY 6ROSS

8 NAME TOTAL WORMRE OUTIME PRY PRY
9 Brittan i

Before continuing, it is 1important to distinguish between values that must be
entered directly, and those which ViewSheet can calculate from a fomula.
According to the rules outlined earlier, the HOURS NORMAL and HOURS
OVTIME values can be calculated from the HOURS TOTAL. Similarly, the
GROSS PAY will be calculated from values in the preceding columns.
Therefore the only remaining values to be entered directly are those in column

E, HOURLY PAY.

Enter the first of these, 4.50, into K9. A problem is immediately apparent.
Trailing zeros are ignored and you end up with the figure 4.5. For sums of
money, you need a slot format that maintains two decimal places whatever the
value. To do this, press:

(EDIT SLOT FORMAT)

In response to:

Format?
FRM

Type: D2

This stands for two decimal places. Note that you can combine instructions for

142

editing slot formats by typing, for example, DZ2L which specifies two decimal
places and ranges left.

Try entering the remaining items in column E using AUTO ENTRY.
Remember to edit each slot format to two decimal places.

Formulae

You are now left with three empty columns and a blank TOTALS row along the
bottom of the table. The values in these positions will all be calculated by
ViewSheet. All that remains 1s to devise a suitable formula for each slot.

Begin with the formulae in the TOTALS row as these are the most
straighforward. To obtain a total for column B HOURS TOTAL, place the
cursor in B16 and type:

B9+B10+B11+B12+B13+B14[RreTuRN]

Almost immediately, the sum of the six numbers appears in B16. Although this
method i1s perfectly acceptable for totaling fairly short lists of values, it is
clearly impractical for lengthy additions. A better way is to specify a range of
values, as shown earlier in the ACCOUNT spreadsheet. Leaving the cursor in
B16, press:

[smrr]+[% | (DELETE SLOT)

This erases the current contents of B16. Now type:

B9B14]Rreturn]

The result should be the sum of the values in all slots from B9 to B14 inclusive.

You will need to specify ranges in a similar way for the other slots in row 16.
You can do this using replication even though each formula contains different
slot references. Press:

(REPLICATE)
The screen will show:
From — To?

Type: B16 - C16F16|return]

The screen will show:

Rdelative, N)o change?

EE 814

Note that the slot reference B9 is highlighted. Your earlier use of replication
involved slot contents that were not formulae. That 1s, they did not include slot
references. This time, as you want to replicate a formula, ViewSheet offers you
the option of replicating each slot reference absolutely or relatively.

143

Absolute replication copies the exact slot contents to the specified range, just as
you did earlier when replicating a label. Relative replication will change B16 to
C16, D16, E16 and IF'16 in each successive slot. To select relative replication on
B9 press R.

The screen will show:

Rdelative, N)o change?

B14

Now you have the option of selecting absolute or relative replication for the slot
reference B14. Again, you do not want B14 to be copied exactly, but to change
to C14, D14, E14 and F14, so press R.

Immediately the row fills with figures. If you pass the cursor along you will see
in the CONTENTS= line at the top of the screen how the formula has been copied
with the slot reference updated each time.

—

Now try using replication to enter formulae in column D, HOURS OVTIME.
The overtime is calculated simply by subtracting the HOURS BASIC from the
HOURS TOTAL. So D9, for example will contain B9-C9. Type this formula into
D9 then use relative replication on both B9 and C9 in order to complete the
column.

A simple formula i1s not sufficient to complete column C, HOURS BASIC. This
value 1s calculated for each employee by looking at the HOURS TOTAL. if this
1s 40 or less then HOURS BASIC will be the same figure. If it exceeds 40, then
HOURS BASIC will be 40. For the first employee, Ms Brittan, you could write

this as:
‘If B9 is more than 40, enter 40. Otherwise enter B9’
which, as a ViewSheet formula, becomes:

I1F(B9>406 400 ,B9)

This is a very powerful spreadsheet facility that enables a condition (B9>40) to
dictate the value (40 or B9) to be given to a slot.

Enter the above formula into slot C9 and use replication to put corresponding
formulae into the rest of column C.

144

At this point, your spreadsheet should look like this:

VA SLOT=(Y
CONTENTS=IF (39)44,40,09)

ovtime rate = 1.79

/ ENPLOY HOURS HOURS HOURS HOURLY GROSS

NAME TOTAL NORMRL OUTIME PRY
4] | 4.8
L 34 ¢ 43
48 9 J.08

All that remains is to complete the final column, GROSS PAY. This value is
made up {from two parts, basic pay and overtime pay. Taking Ms Brittan as an
example, gross pay could be calculated as follows:

basic pay

= HOURS BASIC X BASIC RATE
= 40 X £4.50

= £180

overtime pay

= HOURS OVTIME x BASIC RATE X OVTIME RATE
= 2 X £4.50 X 1.75

= £15.75

e

oross pay
= basic pay + overtime pay
= £195.75

Expressing this as a ViewSheet formula:
(C9*ED)+(DI*E9*F4)

Enter this into F9 then replicate 1t into slots F10 to F14. Note that F4 is the
overtime rate for all employees and as such should be copied exactly to each
slot. Therefore when you see:

R)elative, N)o change?

A >

145

you should press N to signify No change.
Your complete spreadsheet should look like this:

VA SLOT=F9 |
CONTENTS=(CISED) + (DIOEIOF4)

" gutime rate = 1.79

7 ENPLOY HOURS HOURS HOURS HOURLY GROSS
RAME TOTRL HORMRL OUTIME PAY PRY

0 it ' 4. SBELNL

4 3 {.98 133.88

i 48 3.00 270.88

43 48 {.50 293.61

13 Toon 38 38 5.29 199.34
14 Tyler 3.2 328.23
1§ - —emeee e e e oo
16 TOTALS 29 1326.37

This may have seemed a long and complex process to produce what is a
relatively trivial spreadsheet. However, the principles involved are the same
whether your sheet caters for six employees or sixty. The methods and devices
that you have used in constructing the WAGES sheet will stand you 1n good
stead for creating more complex and useful spreadsheets.

As mentioned previously, spreadsheets are particularly useful for answering
questions of the type ‘What if....?’. Below are four problems which you may like
to solve using the WAGES sheet. Although with the help of a spreadsheet they
might seem trivial, you can imagine the amount of calculation that might be
involved if you were using the ‘pen and paper’ equivalent shown on page 138!

1 Having completed this week’s wages sheet you find that Mr Monk has
been fiddling his time sheet and should really be credited only 35 hours.
Edit your spreadsheet accordingly.

2 The company 18 considering Increasing the overtime rate from 1.75 to
1.95. Naturally, the boss is concerned about the possible effect on the total
wage bill. What difference would it have made for week 217

3 Another scheme under consideration is to cut the number of hours in a
normal working week from 40 to 38.

This problem points to a deficiency in the spreadsheet as it stands. Although
you entered 40 as a value in slot C4, all of the relevant formulae refer to the

146

constant 40 instead of the slot reference C4. If slot references are used in
formulae, the whole spreadsheet will be recalculated each time a single slot
value is altered. Therefore, if there is a choice, formulae should contain slot
references instead of just values.

Printing
Printing from ViewSheet is very like VIKW 1n that codes are sent to a printer
driver which controls the operation of the printer. There is a built-in driver for

straightforward printing, whereas to utilise more sophisticated features
available on some printers a driver generator is available separately.

Provided the system is correctly set up, printing the sheet that you have just
created is very easy. Switch to the command screen and type:

PRINT[ReTurn]

The area of the sheet that is covered by the screen will be printed. In mode 3,
that normally includes everything from A1l to 119 which, in this case, includes
your complete spreadsheet.

For printing anything outside the area from Al to I19, ViewSheet uses print
windows. A description of print windows is outside the scope of this guide and
users are referred to the ViewSheet User Guide.

Using spreadsheets with VIEW

You can incorporate spreadsheets into VIEW files. This facility is useful for
creating documents that include tables.

To save your spreadsheet 1n a suitable format (called, say, MONEY) proceed as
follows.

o o | Type:
—\
*SPOOL MONEY|reTurn]

The screen will show:

RECORD then RETURN

Press RECORD on your tape recorder followed by |return], then type:

SCREEN[RreTuRn]

The sheet 1s displayed on the screen as the file is created. Now type:

*SPOOL[RreTuan]

147

Type:

0 *SPOOL MONEY |return]
SCREEN |return]

The sheet 1s displayed on the screen. Now type:

*SPOOL[reTurn]

The effect of this procedure is to save the top corner of the screen from Al to
119. For spreadsheets that extend outside this range, print windows must be
set and the necessary information can be found in the ViewSheet User Guide.

Once saved in this way, the file can be read into VIEW and subsequently edited
or incorporated into another document. Note that spreadsheet files created in

this way must be loaded using VIEW’s READ command and not the LOAD
command.

Other features of ViewSheet

With your experience, albeit brief, of using ViewSheet, you will be able to
appreciate 1ts power and recognise some potential applications. We have had to
omit many of the more advanced facilities that ViewSheet ofters, some of which
are outlined below.

A summary of ViewSheet command screen commands is given in Appendix J
but the ViewSheet User Guide should be consulted for full details of their use.

When using a large spreadsheet 1t is often convenient to display different
sections of the sheet on the screen simultaneously. For example, suppose you
were totalling a list of values in column A. If you were not sure how many items
the list would contain, you might put the total at the bottom of the column in
slot A255. However, if would be tedious to have to keep displaying different
parts of the sheet in order to refer to items in the list and the total in A255.

This problem may be overcome using ViewSheet’s screen windows. A255 can
be displayed in a window at the foot of the screen whilst the list of values in
column A is scrolled independently.

Up to ten windows can be set up at the same time, each of which may be set to a
different width. This enables displays to be set up using wide slots for labels and
narrower ones for values.

As mentioned earlier, windows are also useful in printing. Different sections of
a sheet can be printed adjacently, or incorporated into a VIEW document.

ViewSheet provides a variety of functions for use in slot formulae. You have
already used one of them — the IF function. There are functions that can, for
example, give the maximum, minimum or average values for a specified range.

143

Some functions have counterparts in BBC BASIC, for example INT, LOG and
SIN.

A lookup table may be set up within a spreadsheet. ViewSheet will search
through a list of values until it locates a specified item. The corresponding value
in a second table will then be located and used as required. For example,
suppose the first list contained numeric stock codes and the second list, prices.
A code could be referenced within a slot elsewhere in the sheet as a result of
which the corresponding price would be displayed.

Another useful facility allows data to be displayed 1n the form of bar charts.
Within a specified section of the sheet, numbers are automatically represented
using lines of asterisks.

LA SLOT=B1
CONTENTS=TRAFFIC SURVEY - NEEK ENDING 7TH JAMUARY 1985

TERIERRETIFRPRR2R AR TR 22228 £2 S22 2 e 22)0 8 2
$S80200 05500008

AlS SEEERRERENRAREENSE0I0LS

WEYLCLES $akising

CYCLES sis

GTHER SEESNIS00S

Each # represents 18 vehicles

149

5. Filing Systems

What is a filing system ?

Virtually every computer application (barring the most trivial) requires some
kind of access to an external storage medium, such as cassette tape or magnetic
disc (either connected directly to the computer or provided as part of a network
of computers). In the main, this 1s because the portion of the computer’s
memory which can be used to hold programs and data (the RAM) is unable to
maintain 1ts contents when the power is switched off. Also, in certain
circumstances, the RAM may not be large enough to hold both a large quantity
of data and the program which processes it. Clearly, if programs and data are
to be held outside the memory in this way, the user must be provided with a
convenlent means of referring to them, in order to:

— retrieve (LOAD) existing items;

— access existing items (1.e. selectively retrieve parts of items without having
to load them in their entirety);

— store (SAVE) new items.

The items are normally referred to as files and 1t 1s a filing system which
provides these, and many other facilities.

Standard Filing Systems

Your computer comes equipped with four standard filing systems:

— the Cassette Filing System (CFS);

— the ROM Filing System (RFS);

— the Disc Filing System (DFS);

— the Advanced Disc Filing system (ADFS).

therefore enabling the computer to access files held on cassette tape, cartridge
ROM sockets, conventional flexible (floppy) discs, and even hard (Winchester)
discs. In addition, optional filing systems may be fitted to the machine enabling
it, for example, to act as a station in an Econet network.

Whenever the computer is switched on, or subjected to a hard or soft break
(| c1rL] +{BREAK] OF [BREAK]), 1t automatically selects the filing system designated
by the contents of the CMOS RAM (see page 23). This becomes the current
filing system and it remains in force until you tell the MOS that you wish to use
a different system (using one of the commands described below). The filing
system selected on power-up may be changed by use of the Control Panel utility

(see page 23) or by means of the *CONFIGURE command which is fully
described in the Reference Manual.

150

It 1s 1important to realise that each filing system is, as far as is possible,
compatible with all the others. This means that the command required to, say,
load a file into memory, 1s equally applicable to the Cassette Filing System, the
Disc (or Advanced Disc) Filing System and even the Advanced Network Filing
System. It 1s therefore extremely easy to carry out operations such as
transferring a file from one medium to another, merely by changing filing
systems once the file is resident in the computer’s memory. However, the range
of available options increases with the sophistication of the storage medium
and, whilst all Cassette Filing System commands are applicable to the Disc
Filing System, the reverse 1s not necessarily true. Similarly, the Disc Filing
System commands are applicable to the Advanced Disc Filing System, which
itselt contains a number of specialised commands. The ROM Filing System 1s
an exception to this general rule because of the read-only nature of the
‘medium.

The BASIC Language, VIEW, ViewSheet and the Editor (see page 164)each
have their own built-in commands for communicating with the current filing
system (1.e. LOAD, SAVE, SCREEN etc.) and their purpose and effects are
described in the appropriate chapters. What follows in the remainder of this
chapter is a description of the way in which files are organised by each filing
system and mention of the operating system commands necessary to use the
filing system at its most elementary level. The complete range of commands is
summarised in Appendix E and full details can be found in the Reference
Manual.

The Cassette Filing System (CF'S)
Selected by: *TAPE|reTurn]

Description

The Cassette Filing System is the most basic, and hence the least sophisticated
of the available filing systems; the storage medium is standard audio recording
tape accessed via an ordinary domestic cassette tape recorder.

Files are stored on the tape in strict sequence, as a series of short blocks and
the Cassette Filing System makes no attempt to maintain a record of the files
stored on a particular cassette. This, and a great many other functions are left
to the user. For example, he or she must ensure that:

— the correct tape is loaded into the recorder;

— when a file 1s to be LOADed, the tape 1s positioned
(approximately) at the start of the required file;

— when a file is to be SAVEd, the tape is positioned such that the new file does
not overwrite any existing files which might be needed at some later stage.
The user must even ensure that the file is actually recorded by depressing

the RECORD button on the recorder!

151

The solution to these problems i1s merely one of sensible cassette management,
1.e. ensuring that each cassette 1s adequately labelled with its contents and
approximate tape counter settings for both the start and end of each file.
However, the filing system itself provides what help it can, as described below.

When a file 1s to be LOADed, a search 1s made (from the current tape position)
for the beginning of the file with the corresponding name. The message:

Searching

is displayed together with the names of any files (or parts of files) which are
encountered. This information can often tell you whether you are mn
approximately the correct position and ‘Fast Forward’ and ‘Fast Rewind’ may
be used to reposition the tape if necessary.

Once the start of the required file is located, the message:
Loading

1s displayed together with the name of the file and a count of the blocks as they
are loaded. (Note that this count is in hexadecimal rather than conventional
decimal notation, such that the tenth block is displayed as @A, the eleventh as
BB, the fifteenth as @F, the sixteenth as 180 and so on.) As a (very) rough guide,
each block takes approximately 2 seconds to load, with a gap of about half a
second’s duration between each pair. A bleep is emitted from the speaker when
loading is complete and, if motor control is available, the cassette motor is
switched off automatically.

When a file is to be SAVEd, the filing system reminds the user to press the
correct buttons on the recorder by displaying the message:

RECORD then RETURN

Actual transmission of the content of the file does not start until [return] has
been pressed — although the filing system will still have no means of knowing
whether the recorder is ready or, indeed, if a recorder is connected at all! As
with loading, the filing system displays the name of the file and a hexadecimal
count of the blocks as they are transmitted — a bleep indicates that the transfer
1s complete.

The ROM Filing System (RFS)
Selected by: *ROM]reTurn]

The ROM (Read-Only Memory) Filing System 1s provided for the purpose of
accessing files held in cartridge ROMs, which are inserted into the two special
sockets above the numeric keypad:

152

Either or both of the sockets may be occupied at any time although it 1s
advisable to switch the computer off when inserting or removing a cartridge.

The ROM Filing System provides similar facilities to the Cassette Filing
System — the obvious difference being the read-only nature of the storage
medium and the speed of access to files. A typical ROM Filing System cartridge
will contain one or more files which are accessed using ordinary commands; a
machine code game, for example, would be retrieved by means of a command
such as:

*RUN GAME|Rretunn}

which causes the machine code program GAME to be loaded into memory and
executed — the similarity between the ROM Filing System and the Cassette
Filing System is reinforced by the brief appearance of the Searching message.

Note. It 1s also possible to use either of the two cartridge ROM sockets as
extensions to the computer’s existing Read-Only Memory although this use is
independent of the ROM Filing System. Owners of BBC Model B / B+
microcomputers, for example, may already possess a variety of ROM software,
packaged simply in a chip which is inserted directly into the printed circuit
board. Assuming that the original manufacturer followed the guidelines laid
down by Acorn these chips may be used with the new model by means of a
special User ROM cartridge which is available through Acorn registered
dealers.

The Disc Filing System
Selected by: *DISC[reTurn]

The conventional Disc Filing System 1s supplied in order to provide
compatibility with previous BBC Microcomputers in which the storage medium

153

is the conventional 5.25” flexible (floppy) disc. On each disc, files are recorded
on concentric rings of specially-formatted magnetic material called tracks,
each of which 1s divided up into 10 sectors.

disc casing

\u_ e - : sector (shown
f common 1o

all tracks)

outermost track 10 sectors per track

A

Innermost track

disc surface

Depending upon the type of disc unit in use, either 40 or 80 tracks will be
avallable — some disc units are said to be ‘switchable’ and can be set to read
discs in either format. The recording format used by the Disc Filing System
gives each surface of a 40-track disc a capacity of 102400 (100K) characters,
and each surface of an 80-track disc 204800 (200K) characters.

All discs must be appropriately formatted by the computer before they can be
used with the Disc Filing System and the necessary commands are described in
Appendix K.

The actual process of loading and saving files is carried out by read/write
heads which can be positioned over any of the available tracks on a particular
disc surface as it rotates and this mechanism is referred to as a drive. The
number of available drives is also determined by the type of disc unit:

— One drive is provided by the simplest unit which i1s referred to (quite
logically) as a single-sided disc unit;

— Two drives may be provided either by a double-sided disc unit (which
allows files to be stored on both surfaces of a single disc) or by a twin
single-sided disc unit (which allows files to be stored on one surface of either
of two separate discs);

154

— Most sophisticated (and hence most'expensive') are the twin double-sided
disc units which provide four drives by allowing files to be stored on both
surfaces of either of two separate discs.

Each drive is referred to by a number, which will be 0 when the Disc Filing
System 1s first selected and which may changed (1f your disc unit has more than
one drive) by means of the command:

*DRIVE number|reTurn]

The number sets the current drive and specifies the disc surface that will be
used in all subsequent disc transfers. It is possible to access a particular drive
without changing the current drive number by including a drive specification
in commands like LOAD and SAVE. For example, if PROG1 1s a BASIC

program stored on the disc surface corresponding to drive 2, the command:

CHAIN '"':2.PROG1"[Rretunn]

would load and run the program regardless of the current drive number. The :
symbol indicates that a drive number is to follow and the . separates the drive
number from the name of the file.

The fact that the read/write heads on a particular drive may be positioned over
any of the available tracks, coupled with the fact that the disc rotates, means
that it 1s possible to access a particular file merely by waiting the relatively
short time for the appropriate sector(s) to pass under the heads. This is in stark
contrast to the strictly serial access provided by cassette tape storage.

The disc catalogue

The names and information relating to the position of each file on the current
drive are held in a catalogue stored on the disc itself and an empty catalogue is
created by the formatting procedure mentioned above. The catalogue may
contain a maximum of 31 entries and filenames may be up to 7 characters in

length.

When a file is SAVEd, the Disc Filing System first examines the catalogue to
determine a suitable free area on the current drive. The name of the file 1s then
entered into the catalogue together with its position and the file itself is written
to the designated area. After several such operations, the arrangement on a
particular disc surface might be like that shown in the diagram overleaf:

155

Disc catalogue (names of files)

ILETTER
MEMO
PROG 1

PROG?2
SAMPLE

NN

Remainder of disc (content of files)

111111

LETTER MEMO
PROGH PROG?
SAMPLE = ﬁ

When a file 1s loaded, the filing system first consults the catalogue to determine
whether the file exists on the current drive. If it does, the filing system uses the
remainder of the information in the corresponding catalogue entry to locate
and retrieve the contents of the file.

Files may be deleted, renamed or copied to a different drive using the
commands described in Appendix E.

Directories

The diagram in the previous section shows the catalogue in its simplest form —
it is also possible to group files together into units called directories which are
identified by a single character (normally an upper case letter). You might, for
example, wish to group all your BASIC programs together in directory B and
all your word-processed documents in directory W and this can be achieved in
one of two ways:

— 1instruct the filing system to select a particular directory letter and to apply it
to all subsequent LOAD and SAVE operations. The command:

*DIR directory_—_letter|[return]

1s provided for this purpose. The letter chosen becomes the current directory.

When first selected, the Disc Filing System automatically assigns directory $

156

as the current directory; the files shown in the diagram above would
therefore be part of directory $ (which happens, in this case, to contain all the
entries in the catalogue).

— Incorporate a directory specification in all LOAD and SAVE commands, for
example:

SAVE''B.PROG1"[reTurN] (note the quotes required by BASIC’s LOAD and
SAVE commands)
LOAD W.LETTER[reTurN]

The . is used to separate the directory letter from the file name. The absence
of a directory specification causes the filing system to use the current
directory.

It is, of course, possible to include both a drive and directory specification in a
single command, such as:

SAVE :2.W.MEMO]reTurN]

The diagram below shows a possible Disc Filing System catalogue / directory
structure for one drive — note that the use of different directories does not alter
the maximum of 31 files per catalogue.

Disc catalogue (names of files)

$ S W B
LETTER| |FIGURE MEMO PICT
|MEMO BUDGET| |STD1 DIARY
PROG1| ~——— |pocT S~
PROG? I
SAMPLE

V\/vj

Remainder of disc (content of files)

$.LETTER $.MEMO
$.PROG1 $.PROG?2 B.PIC
$.SAMPLE S.F GUREJ S.BUDGET

157

Libraries

The discussion of the Control Panel on page 23 makes mention of the fact that
machine code programs are executed by means of the command:

*program—_name|reruen]

which (on the assumption that program_name is not a recognised operating
system command) causes the current filing system to load and run the
corresponding program. Such commands will cause the output of message such
as:

Bad command
or
File not found

if the program cannot be located in the catalogue for the current drive /
directory. Whilst it 1s perfectly possible to change drive / directory or even to
issue a command such as:

*:2.U.UTILITY[RreTunn]

(which explicitly states both drive and directory) the Disc Filing System allows
you to specity a library which will always be referenced if a * command fails to
find the file in the current drive / directory. A library is specified by means of
the command:

*LIB drive_specification directory_specification|return]

If only one of either the drive or directory specifications 1s given, the current
setting of the other value 1s assumed.

The library facility is of most use with multiple drives, when it is possible to use
choose one drive for general use and a different drive for utilities, which will
always be directly accessible if the appropriate *LIB command is given at the
start of a session.

Displaying a disc catalogue

A special command 1s provided in order to display a disc catalogue and its
format is:

*CAT drive_number|[return]

If the drive number is omitted, the current drive is assumed.

The Advanced Disc Filing System
Selected by: *ADFS[retunn]

The Advanced Disc Filing System is an alternative to the traditional Disc

158

Filing System; the term ‘advanced’ referring to its capabilities and performance
rather than its suitability for new users of disc systems.

In essence, the Advanced Disc Filing System provides the same means of
controlling the operation of one or more disc drives as the Disc Filing System
but, in addition to a number of additional commands, it provides:

— a recording format which gives each surface of a 40-track disc a capacity of
163840 (160K) characters, and each surface of an 80-track disc a capacity of
327680 (320K) characters:

— a hierarchical directory structure, which overcomes the limit of 31 files per
disc surface in the DFS, and which therefore means that ADFS can make
optimum use of alternative types of disc unit, for example Winchester hard
discs;

— the use (f possible) of both sides of a single disc as one entity;

— faster access to certain types of file (particularly in a network environment).

5.25” and 3.5” discs must be formatted before they can be used by the Advanced
Disc Filing System and the necessary commands are described in Appendix E.

One of the major limitations of the Disc Filing System 1s the maximum of 31
filenames which can be held in the catalogue stored on each disc surface. This
means that a disc may become ‘full’ merely because there is insufficient room to
enter further filenames and not because there 1s insufficent room to
accommodate the files themselves. The Advanced Disc Filing System
overcomes this problem by means of the heirarchical directory structure which
enables any number of files to be stored on a single disc, subject only to the
amount of available disc space (and sensible use of the structure by the user).

The basic unit of storage (as with the Disc Filing System) i1s a file, which is
identified by a name of up to 10 (rather than 7) characters. Files are grouped
into directories, which in the case of The Advanced Disc Filing System, may
also have names of up to 10 characters (rather than a single letter). However,
whereas grouping files together into directories is merely a convenience under
the Disc Filing System, it becomes both a necessity and a positive advantage
under the Advanced Disc Filing System, as described below.

The directory structure

The process of formatting a disc for use under the Advanced Disc Filing System
creates a blank copy of what i1s known as the root directory which, for
compatibility with the Disc Filing System, has the (unalterable) name $. The
root directory may contain up to 47 entries, each of which is either:

— a simple file;
— areference to a subordinate directory, which itself may contain both files and
further subordinate directories.

159

This idea 1s illustrated in the following diagram, which shows a typical, simple,
directory structure and which is described below:

S

G)ONVERD BASIC SOURCES VIEW

<MYPFIOGD GAMES QAYPROGZ) <MEMO) <LETTER)

() () (oo

The root directory contains one file (CONVERT) and three subordinate
directory names (BASIC, SOURCES and VIEW);

— Directory BASIC contains two files (MYPROG1 and MYPROGZ2) and one
further subordinate directory (GAMES). GAMES contains three files
(ZAPPER, SPLATT and ZONK);

— Directory SOURCES is empty;

— Directory VIEW contains two files MEMO and LETTER).

Referring to files

When the Advanced Disc Filing System 1s first selected it will normally read
the contents of the root directory from the disc in drive 0. The root directory
becomes the current directory and you may access any of the files which it
contains (1.e. CONVERT in the example above), for example:

CHAIN''CONVERT" [reTurn]

160

If you attempt to, say, LOAD or SAVE the name of a subordinate directory, the
filing system will respond with a message such as:

Is a directory

because the name 1s merely a pointer to the directory itself and not to the files it
contains.

As with the Disc Filing System, access to files in other directories may be made
in one of two ways:

—~ use the *DIR command to make the directory containing the required file the
current directory (which also gives direct access to any other files in that
directory):

— include a directory specification in the command itself, (leaving the current
directory unchanged).

For example, to LOAD file MYPROGT1 from directory BASIC, you could type:

*DIR BASIC[ReTURN]
LOAD''MYPROG1"' | ReTURN]

which leaves BASIC as the current directory, or type:

LOAD BASIC.MYPROG1[RETURN]

which leaves the current directory unchanged (i.e. as directory $).

Similarly, ZONK (f it 1s a BASIC program) could be executed by any of the
command sequences given below:

— *DIR BASIC.GAMES|RETURN]
CHAIN'"ZONK' [return]

which leaves directory GAMES as the current directory;

— *DIR BASIC[reTurn]
CHAIN"GAMES.ZONK' |return}

which leaves BASIC as the current directory:

— CHAIN"BASIC.GAMES.ZONK]|reTurN]|

which leaves the root as the current directory.

Sequences of directory names, each separated by a . are sometimes referred to
as pathnames.

A pathname may start only from the current directory or from the root
directory — if the current directory is, say, BASIC, file MEMO may be accessed
only by the pathname:

$.VIEW.MEMO

161

Similarly, if VIEW is the current directory, file ZAPPER may be accessed only
by means of the pathname:

$.BASIC.GAMES.ZAPPER

There are, however, two exceptions to this general rule — the first being the use
of the *BACK command; the second being the use of the = symbol. In addition
to ‘remembering’ the current directory, the Advanced Disc Filing System also
remembers the last directory accessed and the command:

*BACK]return]

makes the previously selected directory current, 1.e. it provides a convenient
means of switching between two commonly-used directories.

The symbol, when used as part of a pathname, means parent directory (1.e.
the directory which contains the current directory). Thus, if GAMES is the

current directory, file NEWPROG could be stored in directory BASIC by means
of the command:

SAVE "~ .NEWPROG" [RreTurn]

Fat

instead of using the full pathname:

SAVE $.BASIC.NEWPROG|reTurn]

The symbol @ is used to denote the current directory and it may be used
(together with a number of other, special-purpose symbols) with many of the
commands described in Appendix L.

If a file 1s resident on any drive other than the current drive, it may be accessed
by including a drive specification at the start of the necessary pathname, for
example:

#*DIR :2.BACKUP.VIEW|reTurN]

which makes directory VIEW, within directory BACKUP (tself in the root
directory) on drive number 2 the current directory. A command containing a
drive specification only, such as:

*DIR :71[reTurn]

causes the Advanced Disc Filing System to load the root directory from the

designated drive; it is therefore similar in effect to the Disc Filing System’s
*DRIVE command.

Creating subordinate directories

Whereas SAVE (or its equivalent) is used to store files in the current directory,
the *CDIR command is provided in order to allow the creation of a new
subdirectory in the current directory. Thus, directory SOURCES could be

162

divided into two subdirectories, PASCAL and COMAL, by means of the
following command sequence:

*DIR SOURCES|Rreturn] (Sets current directory)
*CDIR PASCAL]|rerurn] (Creates subdirectory PASCAL)
*CDIR COMAL[Returnj (Creates subdirectory COMAL)

In each case, the effect is to create a new (empty) directory with the
corresponding name.

Libraries

Under the Advanced Disc Filing System (as with the Disc Filing System), it is
possible to specify a [ibrary to contain any frequently-used utility programs.
This may be assigned explicitly using the *LIB command (as described on page
215Yor implicitly by ensuring that the library directory begins with the
characters LIB and that it is an entry in the root directory.

Displaying a directory catalogue

Under the Disc Filing System, the *CAT command is used to display the
catalogue for the current (or a designated) drive. Under the Advanced Disc
Filing System, *CAT is used to display the catalogue for the current (or a
designated) directory, and it may therefore be followed by a pathname. Thus:

*CAT[RETURN] displays the catalogue of the current
directory.

*CAT $.BASIC[return] displays the catalogue of directory
BASIC (regardless of the current
directory).

*CAT :2.BACKUP.VIEW|reTurn] displays the catalogue of directory

VIEW on drive 2 (VIEW being
subordinate to BACKUP in the root
directory).

163

6. The Editor

This chapter describes the Editor and shows, briefly, how it can be used to help
in the preparation of both text and programs.

In essence, the Editor offers a similar range of functions to those available in
the VIEW word processor in that it provides a large workspace into which text
may be loaded, entered, edited and subsequently saved. The major difference,
however, is that the Editor does not carry out on-screen formatting and it is
therefore recommended that VIEW is used for all conventional word processing
tasks (1.e. the production of letters, memos, reports etc.) and that the Editor is
used primarily for creating and editing programs. It 1s mainly the latter use
which is described here, with specific reference to the BASIC language. The
Reference Manual contains a great deal of further information about the
Editor, including a discussion of the powertul formatting commands which can
be used in the generation of bulk text for display or printing.

Before you can learn how to use the Editor, it is important to learn the
distinction between a text file and a file containing a BASIC program because it
affects both the way in which you select the Editor and what you will see while
it 1s 1n use.

— A text file is merely a sequence of characters, each stored as an ASCII code.
It has no special format except that individual lines are separated from one
another by means of a carriage return character (ASCII 13) and the end of
the whole file is indicated by means of special end of file marker.

A text file may also contain ASCII control codes, (1.e. ASCII code which does
not correspond to one of the normal, printable characters).

— A BASIC program file is also a sequence of characters but the important
difference is that it has a special format:

— the file begins with a carriage return character (ASCII 13);

— each program line begins with a line number followed by a count of the
number of characters the line contains;

— within each line, all keywords (PRINT, INPUT, REPEAT etc.) are
represented by special tokens which are merely internal codes and which
help to reduce the overall length of a program when it 1s stored or loaded
Into memory;

— each line 1s terminated by a carriage return character.

The Editor has no way of knowing which type of file is being edited and it
therefore treats every file as a sequence of characters, which means that text

164

files may be loaded directly into the Editor and, consequently, saved without
any modification. Clearly, however, loading a BASIC program file into the
Editor directly will produce a rather peculiar effect, because the Kditor will
attempt to display a single character corresponding to items such as the line
number, the character count and each keyword token. This dificulty is
overcome using the BASIC language’s EDIT command, as described below.

Selecting the Editor

There are several ways of selecting the Editor and the choice of method will
depend upon the type of file and the purpose of the editing session:

— If you intend to create either a text file or a BASIC program file from scratch,
The Editor 1s selected by means of the command:

*EDIT[ReTurn]

This has the effect of clearing the Editor’s workspace ready for subsequent
input in the form of pure text or BASIC program statements.

Text files may be loaded (and even inserted) into the workspace using the
function key commands described below.

— If you intend to edit an existing text file, you may use the procedure
mentioned above or, alternatively, use the command:

*EDIT textfilename|return]

which selects the Editor and automatically loads the named text file into the
workspace.

— If you intend to edit an existing BASIC program file, you must first select
BASIC and load the required program:

*BASIC|reTurN]
LOAD"'programfilename" |reTurn]

and then select the Editor by means of the BASIC language’s own EDIT
command, 1.e:

EDIT|Return]|

This command merely LISTs the current program, not to the screen, but
directly to the Editor’s workspace — an action which effectively converts the
program into a text file.

The reverse operation, that is reconverting the contents of the workspace
into BASIC’s internal format 1s achieved by means of another of the Editor’s
function key commands, as described below.

165

The standard EDIT Screen

Switch the computer on, or execute a hard break, then select the Editor using
the *EDIT command. Almost immediately, the screen will clear and be replaced
with the EDIT screen, which is made up of four components:

-r5 - — —

shf-+B-1 rsht -t I—Tshb-t3-TShf-
Display{Incert |Incett |Remove {Return
t

—|"S - =

rshf- Fshf - sht-+8—ysht -
Get Clear [Marked {Marked |Clesr

Returns|dver 1]e Harilns Lanjuag Mode Marks |Hove Delete_wtezt
~t8 t1 ti fJ ¢ £5 té f 7 ——t 3]
Lo
t

3 Jave [Find |Global | HMark Har ked Prar Ry |
g tile |String {Replace| Place [Copy : texd "te:t;

[pota |Lommand

f1ne Mline

The Acotn Screen Editor £ 1984 Acorn Computers Ver 1. 18 —— Shift: scresn op
Descriptive Mode t {fontrﬂi tert Itirt
9 BB petforms tabulation controlled by shift TRE. Shift: worg |
GPY deietes the character above the tursor, { |-]Eantrnl:
shitt (OPY provides normal soft keys and cursor Lot ar Dine
coE 1n3 (ESCAPE to leave this mode), ¢ |Shitt: screen down
control COPY deletes the corrent line {to next RETURN) Control: text eng

L)

O,

(1) The function key legends briefly describe the effect of the ten function keys,
the bottom row being the effect if the corresponding function key is
depressed on its own; the top row being the effect if the corresponding key is
pressed in conjunction with {snFr]. Two additional functions (not shown on

the screen) are provided by [ctrL J+[# | and [ctaL |+ # |.

(2) The area below the function key legends is reserved for a brief description

of the effect of various keys and, on depression of one of the function keys
(with or without [shiFT]), a summary of the effect of the selected command.

(3) The large, currently empty area in the lower half of the screen is the text
display / entry area which, as in VIEW, provides a window containing a
segment of the text in the workspace. As you would expect by now, you are
able to alter the content of the text displayed in the window and move it in
order to examine other segments of the text.

The black asterisk in the white rectangle is the end of text marker, and, if
you look carefully, you will see the cursor flashing underneath it. This is
because the workspace 1s empty and the current cursor position therefore
corresponds with the end of the text.

166

(4) The small segment at the bottom of the EDIT screen 1s used to display
information about the Editor’s current status, messages and prompts for
replies from the user.

For fairly obvious reasons, the display format described above is referred to as
the Editor’s descriptive mode and it operates in screen mode 128, thereby
giving you the maximum available workspace size.

Other display modes

Other display modes may be selected by means of {swrFt]+] £ | (SET MODE),
which produces the prompt:

New mode 2

at the bottom of the screen.

Press [snrt]+[6 | (SET MODE) and then K in response to the prompt. You
have now selected keyword mode in which the area of the standard screen
reserved for the key and command summaries is no longer present — the
additional space being taken up by a larger text display / entry area.

Press [swirT|+] & | (SET MODE) again but, in this case respond to the prompt
with 7 [return]. You have now selected the mode 7 Edit screen in which, as you
can see, only the text entry / display area and the status line appear. In fact,
any of modes 0, 1, 3, 4, 6 or 7 may be selected and they produce a display with
the normal characteristics of the selected mode. Note, however, that despite the
use of mode numbers in the range 0 to 7, the Editor always selects the
corresponding shadow screen mode, in order to give the maximum workspace
size.

Whilst this last type of Edit screen is less informative that either of descriptive
or keyword modes, it does have the advantage of providing the largest possible
number of lines in the edit window and most experienced Editor users use
either the mode 0 or mode 3 screen display in conjunction with the keyboard
insert supplied with the computer. However, six pages of the Welcome Guide
hardly puts you in the experienced user category and you should reselect
descriptive mode (using [sniFr]+| £ | followed by D [return]) before continuing

with this section.

Note: the Editor display mode 1s one of the items stored by the CMOS RAM and
when you next select the Editor (regardless of whether the computer has been
switched off in between) it will automatically reselect the display mode you
used last.

167

Entering text in the workspace

Try typing in the first two sentences from this paragraph, pressing [return| at
the end of each sentence and watch the effect on the screen. Each time a key is
depressed, the corresponding character is displayed and the cursor (together
with the end of text marker) moves one position to the right. At the end of each
line, the cursor and marker move to the beginning of the next line and, if you
were to continue typing sufficient text to fill the current window, all preceding
lines would be scrolled up to make space for the new line, just as in VIEW.

Now press [swrT]+| o | (DISPLAY RETURNS) and the position of each
depression of [reTurn] will be shown as a letter M reversed out of a white block.
We shall see the usefulness of this feature later in the chapter.

Now use the cursor keys to reposition the cursor under a character anywhere in
the text you have just typed (noting that the position of the end of text marker
remains unchanged. If you now type any characters, you will see that
everything to the right of the cursor on the same line and all characters on
subsequent lines down to the next return character, is moved along to
accommodate the new characters. This effect is produced because the Editor
always starts in what is referred to as Insert mode, as indicated by the word
Insert at the bottom of the screen.

Now press [suirt]+] # | (INSERT/OVER). This changes the word to Over and
selects Overtype mode, in which a new character replaces any character in
the current cursor position. [snirr|+| £ | acts as a toggle between insert and
overtype modes. You might like to see the effect by repositioning the cursor and
typing some further characters.

Further information about the use of the two different text entry modes is
given in the next section but, with your rudimentary knowledge of the VIEW
word processor, you should be able to understand the following features, which
are unaffected by the choice of text entry mode:

- and | ctaL | may be used in conjunction with the four cursor control

keys:

|stiFt]+ 7 moves the text display up one ‘screenful’;

[sniFT]+ | moves the text display down one ‘screenful’;

|sHiIFT]+ <« moves the cursor to the start of the previous word in the
workspace;

[sHiIFT]+— moves the cursor to the start of the next word in the workspace;

| ctrL |+ Tmoves the cursor to the start of the text;

[ctrL]+ |, moves the cursor to the end of the text (i.e. so that it coincides with
the end of text marker):

| ctru |+ <moves the cursor to start of the current line;

| ctrL [+—moves the cursor to the end of the current line.

168

— | TaB] may be used to move the cursor in one of two different modes
referred to as TAB below words and TAB columns of 8. The choice of TAB

mode 18 made by pressing [sviFT]+{ 1a8 | which displays the current TAB mode
and toggles between the two.

TAB below words causes the cursor to be positioned immediately below the
first character on the previous line, thereby providing a convenient means of

producing sensibly indented program listings (such as provided by BASIC’s
LISTO commmand).

TAB columns of 8 causes the cursor to be moved across the screen in steps of 8
character positions. Note that the effect is cyclic, 1.e. movement off the right of
a particular line brings the cursor back on the left of the same line.

The effect of pressing other keys, such as [geturn], and [oeLerg] is
determined by the choice of text entry mode, as described below.

An example of text entry in insert mode

If necessary, reselect insert mode (using [swrr]+| #]|) and then clear the
Editor’s workspace by pressing [swrt|+| f | (DELETE TEXT). Note that you

must confirm your intention by pressing any other key. L.eave, or reselect the
DISPLAY RETURNS option (using Ishrt]+| f |.

Now type in the short, and somewhat uninspiring BASIC program below,
pressing |return] at the end of each line. Note that it contains a few (1) deliberate
mistakes which we shall use to illustrate the effect of some special keys.

19 REM Noddy's program (with apologies to A A Milne)

20 INPUT "What is your name "'name$

33 PRINT ""HELLO "name$', how old are you ?";40 INPUT age’
50 PRINT ''"Did you know that you are '"';ABS(age’-5);

60 IF age’Z>5 THEN PRINT "older'; ELSE PRINT "'YOUNGER":

78 PRINT "than Big Nose ?"

Clearly, if the program is indeed Noddy’s work, the reference to A A Milne in
line 10 1s incorrect and needs to be replaced by Enid Blyton. This change can be
achieved in a number of ways, the most obvious being to use JpeLere]. In Insert
mode, the DELETE key removes the character immediately to the left of the
current cursor position, closing up any remaining characters down to the next
return character. We can therefore achieve the necessary deletion by
positioning the cursor under the) in line 10 and pressing JoeLete] the appropriate
number of times. The fact that we are 1n insert mode means that the characters
Enid Blyton may simply be typed once the erroneous characters have been
deleted, the) and the return character will move across automatically.

Line 30 also contains a mistake, in that it also contains line 40 (without an
intervening carriage return). This mistake can be simply corrected by placing

169

the cursor on the 4 and pressing [retuan], but watch the effect carefully — the
return symbol 1s inserted at the current cursor position but the very fact that it
18 a return symbol causes the remainder of the line to be carried over to the
start of a new line. We shall see later that the effect of [return] in overtype mode
1s rather different.

Note that in insert mode, it 1s possible to join two lines together (1.e. delete the
separating return character) by position the cursor at the start of the second of
the two lines and pressing |peLere].

Line 50 has the characters " years ''; missing from the end of the PRINT
statement and these can merely be inserted by pressing the appropriate keys
once the cursor has been positioned over the return symbol.

The appearance of the output from the program would probably be improved if
the characters YOUNGER were replaced by younger and this change could be
made using the [peLere] procedure described above. However, the occurence of a
second mistake of this type gives us the opportunity to examine the effect of
which, somewhat surprisingly, actually deletes characters, but to the
right of the current cursor position. The deletion can therefore be made by
positioning the cursor under the ' character preceding the letter Y and
pressing to delete the incorrect characters. Once again, the required
characters may merely be typed in order to achieve the correction.

The final mistake (unless you introduced some more of your own) is the
reference to Big Nose rather than Big FEars. Either of the two deletion and
replacement techniques could be used again in this case, but take the

opportunity to see the effect of another function key command -
(GLOBAL REPLACE).

If you press the prompt:
Global replace:

will appear at the bottom of the screen and you can then specify both a target
string and a replace string, separated by a / character. Our stmple change may
be achieved merely by typing:

Nose/Ears|ReTurn]

and the Editor will confirm that,in this case, it has found 1 such target string
and replaced 1t with the replace string. However, one of the most powerful
features of the Editor is the sophistication of its search and replace functions
([#] (FIND STRING) and (GLOBAL REPLACE)), an indication of
which can be gleaned from the brief description produced in response to your
depression of | £ |. Further information on this somewhat advanced editing
technique can be found in the Reference Manual.

Remember that the content of the Editor’s workspace is merely a sequence of

170

text which happens, in this case, to contain the line numbers, keywords and
other symbols which make it obey the rules of the BASIC language. If the file is
saved (using (SAVE FILE)), it will be saved as a text file and any
subsequent attempt to LOAD it in BASIC will produce a Bad program
message. If you wish to verify that Noddy’s masterpiece actually works, you
must supply the content of the Editor's workspace to BASIC using

[shiet|+[7« | (RETURN LANGUAGE), which produces the prompt:

Language ?

At this point you should type BASIC]return] and, after a momentary delay while
the necessary conversion takes place, the screen will clear and be replaced by
familar > prompt from the BASIC language. You may, of course, RUN or LIST
the program and possibly make some minor alterations using the normal
cursor editing functions.

To SAVE the program as a BASIC program file you must give an appropriate
SAVE command whilst still in the BASIC system but you may return the the
Editor at any time merely by typing:

EDIT[return]

An example of text entry in overtype mode

Insert mode 1s the most commonly used of the two text entry modes but it is
instructive to repeat the same sequence as above in overtype mode in order to

see the differences between the two. In the main, these centre upon the effect of
the [return], [peELeTE] and keys.

Clear the Editor’'s workspace and retype the sample program on pagel69,
including the errors. Ensure also that the DISPLAY RETURNS option is ON

and then select overtype mode (using [shet]+] £]).

To change A A Milne to Enid Blyton in insert mode, we positioned the cursor
under the) character and made several depressions of |peLere]. Try this
technique again in overtype mode and watch the effect. The first difference is
that the characters to the right of the cursor are not closed up as each character
1s deleted. The second difference 1s that when you type the new characters to
correct the error, you ‘run out of space’ after Enid Blyt. In this case, the
simplest solution 1s to continue typing the characters on), replacing the
existing). Notice, however, that while the) symbol 1s overtyped, the return
symbol obligingly moves to the right for each remaining character depression.
This 1s because its replacement would have the effect of removing the separator
between two lines and the Editor would then have to make some judgement on
the content of the unused character positions beyond the end of the new text.
Clearly, the more sensible approach is that adopted, which considers any text
immediately before a return to be an extension to the current line. The same
argument 1s applied to any attempt to delete a return character.

171

If the mistake had been nearer the beginning of the line the technique above
would mean retyping almost the whole line and a better approach would be to
switch to insert mode (possibly temporarily) in order to add the necessary
characters.

Now try the technique for splitting the two lines; line 40 steadfastly refuses to
budge and depression of |return] merely repositions the cursor at the start of the
next line. This is because overtype mode considers [return] to be just that, an
instruction to return the cursor to the start of the next line and the only
instance when a return character 1s inserted into the workspace is if the cursor
coincides with the end of text marker, i.e. when a completely new line is
created. The two lines may therefore be separated only by switching back to
Insert mode.

The missing characters in line 50 may merely typed in after positioning the
cursor over the return character, as in the example above.

Replacing YOUNGER with younger is a relatively straightforward task as both
strings are the same length but, once again, it 1s useful to see the effect of the
key in Overtype mode. If is pressed with the cursor under the "
character preceding Y, it is the " which disappears, and not the Y (as in Insert
mode). Furthermore, you may hold your finger down on |coey]for as long as you
like because the cursor does not move. In other words, in Overtype mode,

has the effect of deleting the character curently under the cursor and it is
therefore foolish to allow repeated deletion in one direction or the other.

| « | (FIND STRING) and (GLOBAL REPLACE) operate identically in
both Insert and Overtype modes.

Block operations

If you examine the function key legend at the top of the Descriptive mode
display (or, indeed, the Editor keyboard insert) you will find several references
to marks which are the basis of all block operations within the Editor and which
are briefly described below. It must be said, however, that block operations are
more appropriate to conventional text editing rather than the editing of BASIC
programs.

The display at the bottom of the screen always shows the current number of
marks (initially 0) and a mark may be inserted at the current cursor position by

pressing (MARK PLACE).

Deletion of a block is achieved by positioning one mark over either the start or
the end of the block to be deleted and using the cursor itself to identify the other
end of the block. The actual deletion is carried out using [swrFT]+] £]
(MARKED DELETE).

172

In order to either move or copy a block of text, both the start and end of the
required block must be marked — the cursor i1s used to indicate the destination
position. Blocks are moved using [sHiFT|+]| # | (MARKED MOVE) and copied
using (MARKED COPY). Movement (and deletion) of a block removes
the current markers, but the copy operation does not, thereby enabling
multiple copies of a particular block to be made if required.

Scroll margins

If you examine the function key legend in either descriptive or keyword mode
(or, indeed, the keyboard insert) you will see that [shrr]+| £ | represents
CLEAR MARGINS. In the context of the Editor, the margins refer not to the
width of the text (as in VIEW) but to the points at which the content of the
screen begins to scroll (1.e. move up or down one line, thereby bringing a new
line onto the screen). Unless you specity otherwise, the Editor begins scrolling
whenever the cursor reaches the fifth line from the top or bottom of the current
text display / entry area — the idea being to enable you to see the context of the
line you are editing.

sirr]+] 5 | (CLEAR MARGINS) sets the top and bottom scroll margins to the
top and bottom lines of the text entry / display area respectively. However,
either the top or the bottom scroll margin may be reset by using [sHiFT]+[f |
and [swFrt]+| £] respectively — the line chosen being that containing the
cursor at the time of the function key depression. Thus, by setting the top and
bottom scroll margins to adjacent lines, it is possible to make the whole screen
scroll whenever the cursor is moved to another line.

173

7. The Terminal Emulator

Preceding chapters have described the BASIC language, the VIEW word
processor, ViewSheet and the System Editor — all examples of applications
software designed to make your computer a powerful, general-purpose tool.
This chapter makes brief mention of the remaining item of standard
applications software — the Terminal Emulator — which provides the facilities
necessary to use your computer as either a local or a remote terminal to other
computer systems. A full description is beyond the scope of this guide and users
wishing to make use of the Terminal Emulator should consult the appropriate
chapter in the Reference Manual.

In essence, the Terminal Emulator is a machine code program in ROM which,
when called by the command:

*TERMINAL[retuan]

controls the transmission and reception of data between the host computer
system and your microcomputer; all transmission takes place via the R5423
serial interface. The computer may be connected directly to a local system:;
connection to a remote system requires the use of a suitable modem or acoustic
coupler which is itself connected to the host system via telephone lines (or a
dedicated data network). Space for an internal modem has been left inside the
computer’s case.

174

8. Expanding the System

This section covers expansions to the basic system, both in the form of
peripherals (i.e disc units, printers etc.) and in the form of additional, so-called
co-processors. The aim here i1s to provide basic information — 1t 1s important to
read and follow any additional instructions provided with any expansion unit.

The illustrations below show the various sockets on the back and front

underside of the computer.

! M L s

i Yo T W T

— — .y . =, [o, "
ulldoutuduidolgotulidutuduttiuuitotidutuibibieiutiduiguiiutoutiiiiiauuduiuean

Yo QO g ¢ @ 3

(ECONET) ANALOGUE | ON/OFF SWITCH
AUDIO OUT |RS423 RGB UHF
CASSETTE COMP VIDEO
AUXILIARY
POWER DISC USER 1 MHzZ
QUTPUT DRIVE PRINTER PORT BUS TUBE

\ N \ | !

:!-

. ﬂor'rr'q?'_l\ﬂ — 1\“‘ = "'""'j
Y
ﬁl =

>~ © DDA - o
L

SEVEE TSR
]J”” ””ﬂ“”[sl ale '1&F_F_. &y M H el e e e I ril -1 ._-_rﬁ MM N N o oM Tl -] o
ot d L b R N T T R el B Rl b et W4 L e e W b Ll kel W)W W W WD R b LA I— et b

[

OO
O
UL
O
O
©)

175

Connecting a colour monitor

Whilst the use of an ordinary domestic colour television 1s adequate for many
users, those with specialist requirements, such as a high volume of
word-processing (see note below), or extensive use of colour graphics, will
benefit from the addition of a colour (RGB) monitor. (RGB stands for
Red-Gireen-Blue, the three basic colours which, in conjunction with the normal
black screen background, provide the full range of eight basic and eight
flashing colours.)

Colour monitors provide better definition and have a further positive benefit —
they release the household television for use by the remainder of the family!

Connection to the computer is by means of a 6-pin DIN lead which is plugged
into the socket marked ‘RGB’ on the back of the computer.

No special commands are required to drive a monitor although, as with a
domestic television, you may also need to use the Control Panel utility to reset
the vertical screen alignment (see page 24).

Note

Serious users of VIEW or ViewSheet may also consider the connection of a
monochrome monitor (typically green-on-black or amber-on-black), which
offers better resolution at less cost than a full-colour, RGB monitor. Such units
are normally connected to the computer via the ‘Video out’ connector on the
back of the computer.

However, better quality medium- or high-resolution RGB monitors can also
cope more satisfactorily with the display of small characters.

Both RGB and monochrome monitors are powered directly from the mains.

Connecting a disc unit

By far the most useful expansion to the basic system is the connection of a disc
unit which provides rapid access to files and which also removes much of the
manual intervention associated with cassette tape storage.

5.257°, 3.5” and 3”’ disc units

Single or multiple drives of this type are connected to the ‘disc drive’ connector
located on the front underside of the computer. (Your supplier will be able to
ensure that the disc drive has the appropriate plug on the end of the connecting
cable). Some disc units are powered directly from the mains; others are able to
take their power directly from the computer using a connecting cable and a
special plug which is plugged into the ‘auxiliary power output’ socket.

If you have not already done so, you will probably want to re-configure your

176

computer (using *CONFIGURE or the Control Panel utility) so that it selects
cither the Disc Filing System or the Advanced Disc Filing System on power-up.

Winchester Disc units

The Acorn (and other) Winchester hard disc units are mains powered and
connected via the ‘1 MHz bus’ connector, located on the front underside of the
computer.

Winchester disc drives must be operated under the control of the Advanced
Disc Filing System.

Connecting a printer

A printer 1s almost essential if you are going to use the VIEW word-processor or
ViewSheet; it 1s a convenience if you are writing programs of your own.

Your computer can be used with the vast majority of currently-available
printers, which are of two types:

— parallel printers, incorporating a ‘Centronics (r) interface’;
— serial printers, incorporating a ‘RS5232-C (or V24) interface’.

All printers are mains powered; parallel printers are connected to the ‘printer’
socket on the front underside of the computer; serial printers are connected
(using a 5-pin (Domino) DIN plug) to the RS423 socket on the back of the
computer. (RS423 is a later, but compatible standard to RS232C).

You must tell the computer which type of printer you are using, and this 1s
done using the *FX5 command:

— *FX5,1]|return] tells the computer that you are using a parallel printer;

— *FX5,2|reTurn] tells the computer that you are using a serial printer; and you
must also tell the computer the speed (referred to as the baud rate) at which
the printer operates using the *FX8 command:

*FX8,1|reTurn] — 75 baud
*FX8,2]rerurn] — 150 baud
*FX8,3]return] — 300 baud

*FX8 ,4]return] — 1200 baud
*FX8,5|return) — 2400 baud
*FX8 ,6|return] — 4800 baud
*FX8,7[return] — 9600 baud
*FX8,8return] — 19200 baud (not guaranteed)

Many printers have an automatic line-feed facility and in such cases, 1t is
necessary to tell the computer not to send additional line-feed characters to the
printer. This 1s done using the command:

*FX6,10]|reTurn]

177

*FX6 tells the computer not to send a particular character to the printer; 10 is
the character code for a line-feed.

[t is possible to make the computer carry out each of the necessary commands
on power-up using the *CONFIGURE command or the Control Panel utility.

Connecting Joystick(s)

Many computer games and some rather more serious applications can be
enhanced by the use of one (or a pair of) joystick(s), which can be used to
position objects displayed on the television or monitor screen.

Joystick(s) are connected via the ‘analogue in’ socket which is located on the
computer’s back panel.

Joysticks do not require a power supply.

The ‘analogue in’ socket may also be used for the input of other analogue
signals, such as might be produced from equipment monitoring scientific
experiments.

Connecting a Teletext Adapter

Using a Teletext Adapter, your computer can be made to receive (and store)
pages of teletext information broadcast by both the BBC’s CEEFAX and the
IBA’s Oracle services.

The Teletext Adapter 1s a mains powered external expansion unit
Incorporating a conventional television aerial connection and a tuner unit
enabling each of the four currently-available UK television channels to be
selected (1.e. BBC1, BBC2, ITV and Channel 4). The unit itself 1s connected via
the ‘1 MHz bus’ connector and operates under the control of a special Telesoft
Filing System (TFS), which 1s supplied (as a ROM) with the unit.

The Teletext Adapter may also be used to access programs transmitted by the
BBC’s Telesoftware service (see CEEFAX pages 700-).

Connecting a Prestel Adapter

Whilst the Terminal software in the computer (and a suitable modem) provide
the facilities necessary to connect your computer to a variety of other computer
systems, The Acorn Prestel Adapter provides you with a convenient means of
accessing, and interacting with the British Telecom Prestel Service (and other
similar Viewdata services).

The Prestel Adapter is a mains-powered external expansion unit which
connects to the RS423 socket on the back of the computer. It contains a
self-dialling modem and it is connected directly to your normal telephone socket
using a lead and plug supplied. The Adapter also comes with a ROM containing
the software necessary to drive the adapter.

173

The user port

As mentioned above, the ‘analogue in’ socket can be used for the input of a
variety of analogue signals but some devices produce digital signals and these
can be read from the 8-bit User Port, located on the front underside of the
computer.

It 1s therefore possible to connect a Mouse or a Trackerball and use it to carry
out functions such as controlling the movement of the cursor and identifying
objects on the screen (using one or more of the available push buttons).
However, the real power of the User Port lies in its ability to provide both input
and output making it possible to transmit signals to control the operation of
external devices such as robot arms and machine tools.

Connecting an IEEE interface

Whilst the 8-bit User Port is often adequate for small control applications,
serious sclentific applications will require your computer to adhere to the
international standard IEEE 488 interface specification and this is provided by
means of the Acorn IEEE Interface expansion unit.

The unit is mains powered and is connected to the computer via the ‘1Mhz bus’.
In turn the unit can be connected to a network of up to 14 separate devices,
such as oscilloscopes, voltmeters, spectrum analysers and frequency meters.

Connecting a co-processor

In its standard form, the computer is driven by a 65C12 microprocessor but it is
possible to fit additional co-processors, some of which are designed merely to
expand the power and versatility of the basic machine, others to actually
change the nature of the machine so that it can be used for applications
requiring specialist facilities.

The 65C102 co-processor
The 65C102 is an internal expansion unit which plugs directly into connectors

provided in the computer’s printed circuit board.

It contains its own 64K of user memory and, in use, produces significant
increases In processing speed, vital for serious computer applications,
particularly those involving large-scale use of Assembly Language.

The 6502 second processor

The 6502 second processor is a mains powered external expansion unit which is
connected via the “Tube’ connector located on the front underside of the
computer.

179

Like the 65C102 co-processor, it contains its own user memory and increases
your computers processing speed and capability.

The 32016 second processor

The 32016 second processor 1s a mains powered external expansion unit which
is connected via the “Tube’. It contains a NS32016 32-bit processor and up to
1Mb of user RAM, thereby producing a 32-bit microcomputer system suitable
for the efficient development and execution of software requiring a large
amount of processor power or 32-bit arithmetic. In addition to BBC BASIC, the
32016 second processor comes with four languages, C, FORTRAN 77,
Cambridge Lisp and Pascal. An internal, co-processor version is planned for
later availability.

Operation of the 32016 second processor is controlled by the PANOS operating
system supplied with the unit.

The Z80 second processor

The Z80 second processor is a further mains powered external expansion unit
which may be connected to the computer via the ‘Tube’. It contains a Z80
processor and its own 64K of user memory which allows you to load the CP/M
operating system — probably the most common business-oriented operating
system in use — and hence gives access to what is one of the largest business
software libraries available.

The usual CP/M utilities are provided with the unit together with a series of
software packages:

— BBC BASIC;

— MemoPlan, a CP/M based word-processor;

— FilePlan, a personal database package;

— GraphPlan, a spreadsheet modelling program;

— Accountant, an integrated accounting system:;

— CIS COBOL (incorporating the ANIMATOR debugging tool and FORMS2,
an aid to the development of interactive CIS COBOL programs);

— Nucleus a system generator which will help you to develop your own CP/M
based software.

Further co-processors based on other microprocessors and operating systems
are both possible and likely to be made available for your computer. Contact
your dealer or supplier for details.

180

Appendix A

Mode characteristics

Table 1 below gives the text, character set, graphics and colour capability of
each of the eight standard screen modes and their corresponding ‘shadow’
screen modes.

Information relating to the default colour assignments for screen modes 0 — 6
and their corresponding ‘shadow’ screen modes is given 1n Table 2. A change of
mode always results in the selection of a white foreground and a black
background for both text and graphics (if available).

Table 1

Mode Text Text Character Graphics Pixels Colours
FOWS columns set,

0 (128) 32 80 ASCII 640 X< 256 2
1(129) 32 40 ASCII 320 x 256 4
2 (130) 32 20 ASCII 160 x 256 16
3 (131) 25 80 ASCII - 2
4 (132) 32 40 ASCII 320 x 256 2
H (133) 32 20 ASCII 160 x 256 4
6 (134) 25 40 ASCII - 2
7 (135) 25 40 TELETEXT (see Appendix B)

181

Table 2

Mode Foreground Background Colour

0 (128)

3 (131) 0 128 Black

4 (132) 1 129 White

6 (134)
0 128 Black

1 (129) 1 129 Red

5 (133) 2 130 Yellow
3 131 White
0 128 Black
1 129 Red
2 130 Green
3 131 Yellow
4 132 Blue
5 133 Magenta
6 134 Cvyan

2 (130) 7 135 White
8 136 * Black/White
9 137 * Red/Cyan
10 138 “ Green/Magenta
11 139 * Yellow/Blue
12 140 * Blue/Yellow
13 141 * Magenta/Green
14 142 * Cyan/Red
15 143 * White/Black

* denotes a flashing colour pair

182

183

Appendix B

Character Sets

ASCII displayed character set (modes 0 to 6 and 128 to 134)

ASCII codes in the range 0 to 31 are control codes which correspond to the VDU

codes described in Appendix G.

|

N _% '.‘1% ”b% b;q\ Ea A ‘H}Q‘%
Nothing Down Default Move :
logical tex! { . EJ
colors cursor . ' , L.
to @
Next to Uip Disable Move .
CUrsor
MNtart (Clear Select)) o |
printer text mode . n E u
Stop start of Reprogram | - -
printer line characters u ﬂ : E
Separate Paged Define A —] . -
CUrsOrs mode graphics H ! [ﬂ [E I.n
area -
Join Scroll Plot ' e || B -
CUrsSOrs mode ol
Enable Clear Default) .) »
VDU graphics text/ '5 : I :i : n
graphics '
areas
HE‘E‘[} Define I\:Dthing . . -
color " ;
Back Define Define) r |
graphics text k " . ’ |
color ares ol l ; |
| H
Forward Define Define _ _
logical graphics ' |
colors origin :

!

Each displayed character consists of eight rows of eight dots.

184

L] F
: : %

114"

=:] =:'E=

N A =

ME3

olulLlelal TH b

plzlEfElz] Rl uE o=

RHEE S i)

L = s Wl P SRR TS TR

189

Teletext displayed alphanumeric character set (modes 7 and 135)

Codes in the range 0 to 31 are control codes which correspond to the VDU codes
described in Appendix G.

Codes in the range 128 to 159 are the Teletext control codes which affect
subsequent characters on the same line (see page 95). The characters shown in
the table below are those displayed under the effect of an alphanumeric control
code.

_ &
\ N 3 9 K Q@ O
Nothing Down Nothing Maove [.
CUrsor :
- -+
:\.Tlp}{i_ to Up IJisahle NI{']‘-.’E : n
] printer VDL CUrsOr H E E E E E
|
R , 1 S
| Start Clear Select - .
, | printer SCreen mode E ﬁ E E E E
| Stop Start of Reprogram — .
:i 3 printer line characters E E E E E E E
+ ’
Nothing Paged Nothing g | Py ?
mode = . r |
¥
Nothing Scroll Nothing
. . b el
Fnable Nothing Nothing o .
¢
. - "o e -r J
Beep Nothing Nothing - - | . Rack
; | l: ! | space and
| | delete
1— : . | ' B —pe J'
Back Nothing Nothing _ . Nothing
—4 + 4 + 4 4 —4 1 J
Forward Nothing Nothing : : Alpha
g | H n E ﬁ E m m "
e . | i | - | |

Each code produces a unique character. Thus VDU 78 or PRINT
CHR$(78) would display an N since column 70, row 8 shows an N.

186

D o @ & O RN
Alpha Normal * | Graphic .
green height Cyan l ﬁ E E
4+
Alpha Double * | Graphic
yvellow height white H E E ﬁ E E E
Alpha Nothing Conceal e —
I
' 1
Alpha Nothing Contiguous .
i o
magenta graphics * E i ﬁ E E
Alpha Nothing Separated e
cyan graphics E l E E E u
Alpha * Graphic Nothing :
—+ {
Flash Graphic Black *
green hackground ﬁ ﬁ l E E E
. t '
Steady * Graphic New
vellow background H n I= E m E
- N
Nothing Graphic Hold —
blue graphics H E E E E
Nothing Graphic ‘Release * — ~
magenta graphics ﬂ E E E E E E
F J e

* every line starts with these options

187

Teletext displayed graphics characters

Codes in the range 0 to 31 are control codes which correspond to the VDU codes
described in Appendix G.

Codes in the range 128 to 159 are the Teletext control codes which affect
subsequent characters in the same line (see page 95). The characters shown in
the table below are those displayed under the effect of a graphics control code.

d X ad o$ S S S S RPN
Nothing Down Nothing . Move [2 1 1
cursor : |
@ to @9 | |
Next to Up Disable | Move - |
1 | printer VDU cursor E E ﬁ |.I L h.
Start Clear Select |
2 | printer screen q mode . : E E E :. . .
i :
S i .
top Start of Reprogram . - |
3 printer ine characters ' | u h
i- | J
1 1 :
Nothing Paged Nothing B —_ .
i .
Nothing Scroll Nothing : . .
a mode E I'i E . i. h L-
Enable Nothing Nothing [1 | |
i 3 TEORE
L.
- Beep Nothing Nothing : . ! l Back
| space and
J E m F i 1 i | delete
| Back Nothing T Nothing) Nothing
8 | ﬁ
- RIE kT ™
1T 1 1 3
Forward Nothing Nothing _] - .| Alpha
9 J 12|
1~ [—

Each character has a code. Thus H is code 72 since it is in column 70

row 2.

188

o . &P S o q}fb RN I
Alpha Normal * | Graphic =
green height cyan . E H E
Alpha Douhle * { Graphic ‘ R
yellow height white ' | I -' H E E ‘ -
| . |
Alpha Nothing Conceal i | .
blue display . - -' E H u L I
Alpha Nothing CDntigumus : r n |
magenta graphics * . . - H |
. N
Alph Nothin Separated - |
w T g
>y phics ! -
Aipha * Graphic Nothing . : _ Back
white red J E i m H . l space
and
‘{ Jf 4 delete
Flash Graphic Black * , : |
green background n E E E F ..
T,
Steady * Graphic New _ = | g 1 |
yellow background ‘ E H r | =
Nothing Graphic Hold ‘r —- N
blue graphics : h - | r
g I _- -
Nothing Graphic Release | o | |
e e | g 0 R R [
N m i
= 2 1 F e &

* avery line starts with these options

189

Keyboard codes

The code produced by each key on the keyboard depends upon the settings of
caps lock, shift lock and the depression of or [ctrL |. For each key in the
diagram below:

— the lower number 1s the lower case code;

— the middle number i1s the upper case code;

— the top number is the code generated if the key is depressed in conjunction
with [ctaL |.

The codes generated by the 10 function keys can be specified by the user (see
Appendix D).

The cursor editing keys produce codes only if enabled with *FX4 (see Appendix
D).

All numbers are given in decimal.

190

£1 9 8t

el Gt 8v

el SiY 8BY
4% LS 0§ By
4% LS 05 §1%
4% LG 09 6Y
Led VS £S ¢S
Lel vS £S ¢S
Lel rS £S ¢S
SE FAS 9% GS
SE LS 95 GG
GE LS 95 GG
g Fd Sv Er
Ay Y =14 er
cy Ly St er

ze
28
2
el /24 LY 9y bb 601 0L} g6 g1l 66 024 2zl W30
GEl L2} 1L AIHS £9 29 09 Le 8/ 99 99 L9 89 06 1AIHS
sel /Z) LY 9t ot el Pl Z 22 o bz 9z L4IHS
el 06 29 bG B0t 0L Q01 POL col FALN Q01 GiLl LB WIOT
gl szl oy b 9/ 5/ v/ 2/ Vi 0/ 89 €8 59 181D A
£l 62 95 6G i Ll 01 3 / 9 v 61 | 5dV
gcl 56 16 9 Zi1 mn S01 e 121 9Ll pil 101 611 oLl 6
gei 96 Al $9 08 67 e/ 58 69 bg 29 59 /9 6
e 16 /2 0 91 Sl 6 12 G2 0z 81 G ez 6
/1 9g1 26 6 Sy v /S 9G 55 b £ z5 LS 0S 6 I
/€1 9g | vz 921 L9 g Lb O 6E 8e € 9g G be o L2
/€1 gt gz oe Sp g LS g6 o e £5 25 1S 0S 6 /2
6€1
651

octl

191

Appendix C

Operating system commands

Operating system commands provide a means of communicating your
requirements to the MOS. The commands described below are of a general
nature; summaries of the commands applicable to the various filing systems
are contained in Appendix E.

Operating system commands may be issued directly from the keyboard (in
which case they are terminated by depression of [return]) or incorporated in
programs.

Most commands may be abbreviated to their first few characters terminated by
a . — where applicable, the minimum abbreviation for each command is given
in brackets after each command name.

Commands marked 0 apply to facilities required only by advanced users and
full details can be found in the Reference Manual.

*CODE O Provide a means of executing machine code
routines which are already in memory as if they
were part of the MO®S.

*CONFIGURE (*CO.) Provide a direct means of altering the settings held

in the CMOS RAM (1.e. without using the Control

Panel utility described on page 23). *CONFIGURE

takes one or two parameters, the first being the

name of the setting to be changed; the second (if
necessary) being the value to be stored in the-
CMOS RAM. In the parameter list below, n and m

denote decimal numbers; x denotes a number in

hexadecimal notation.

0O BAUD n Change the RS423 transmit/receive
rate setting according to n.
BOOT Reverses the actions of |sreak] and
[sHiFT |+ [BREAK].
CAPS Set CAPS LOCK option.
0 DATA n Change the R5423 data format

setting according to n.

DELAY n Change the keyboard auto-repeat
delay setting to n hundredths of a
second.

192

DIR

EXTUBE

FDRIVE n

FILE x

FLOPPY

HARD

IGNORE n

INTUBE

LANG x

LOUD

MODE n

NOBOOT

NOCAPS
NODIR

NOSCROLL
NOTUBE

PRINT n

QUIET

REPEAT n

SCROLL
SHCAPS

Initialise ADFS with selected
directory.

Use an external second processor (if
fitted).

Configure the disc controller for
different types of disc unit according
to n.

Change the default filing system
setting to that contained in ROM
socket x.

Cause ADF'S to access the floppy disc

unit when 1nitialised.

Cause ADFS to access the
Winchester disc unit when
initialised.

Change the ‘printer ignore character’
to ASCII n. If n 1s omitted, all
characters are sent to the printer.
Use an internal co-processor (if
fitted).

Change the default language

setting to that contained in ROM
socket x.

Change the volume setting for the
BELL sound to full.

Change the display mode setting to n
(0=7 or 128-135).

Assigns normal function to [sreak]
and [sHirT]+-[BREAK].

Reset the CAPS LOCK option.
Initialise ADFS without a directory
selected.

Enables the scroll protect option.
Ignore both internal and external
CO-Processors.

Change the printer type setting
according to n (see page 177).
Change the volume setting for the
BELL sound to half volume.

Change the keyboard auto-repeat
rate setting to n hundredths of a
second.

Iisables the scroll protect option.

Set the [snirt]+] 2&] option.

193

*G0O

*GOIO0

*HELP (*H.)

*IGNORE (*IG.)

*INSERT (*INS.)

*KEY (*K.)

*LINE

194

TUBE Use a second (co-) processor (f

availlable).

TV n,m Set the vertical screen alignment and
interlace option settings (as *TV
below).

When used without a parameter, *CONFIGURE
displays a list of the above options.

Execute a machine code program in a single
processor system or in the language processor of a
system equipped with an internal or external
second processor.

Execute a machine code program in the /O
processor of a system equiped with a second
processor (i.e. across the Tube).

Display brief information about the MOS, the
languages and the filing systems currently resident
(but not necessarily selected) in the machine.

Set the ‘printer ignore character’ (see pagel7’7).For
example:

*TGNORE 18 causes line feed characters (ASCII
10) to be 1gnored by the printer.

It is possible to make the MOS ignore the presence
of a given ROM using the *UNPLUG command
described below. *INSERT returns the ROM in a
specified socket to its normal status, but only after
a hard break or subsequent power-on.

Assign a sequence of characters to a specified
function key (see page 14). For example:

*KEY @ LIST!M assigns the BASIC LIST command
to function key O.

Acts in a similar manner to *CODE (above) except
that 1t provides a means of passing a hne of text
(1.e. the remainder of the command) to the routine.

*MOTOR (*M.) Controls the cassette recorder motor:

*MOTOR @ switches the cassette motor otf:

*MOTOR 1 switches the cassette motor on.
*MOVE 0 Copy files from one filing system to another, for
example:

*MOVE -DISC-ADDRESS ~-TAPE-BACKUP

copies file ADDRESS from (DFS) disc to cassette,
using the name BACKUP.

*ROMS Display a list of the ROMs currently present in
each of the 16 ROM sockets. The listing gives the
socket number (in hexadecimal), the ROM name
and an indication of whether the ROM is currently

available (see *UNPLUG below).

*SHADOW (*SH.) Switch to either the main memory or the shadow
memory:

*SHADOW @ causes the shadow memory to be
selected on subsequent mode changes
(even 1if the mode selected is in the
range 0 — 7);

*SHADOW 1 causes main or shadow memory to be
selected according to the mode
number (i.e. modes 0 — 7 select main
memory, modes 128 — 135 select
shadow memory).

*SHOW Display the sequence of characters currently
assigned to a specified function key. For example:

*SHOW 0@ displays the sequence of characters
currently assigned to function key O.

*SHUT Close all currently open files known to the MOS,
regardless of the current filing system.

*SRDATA 0 Reserve a designated area of sideways RAM for use
with data.

*SRREAD 0 Copy a designated area of sideways RAM to normal
RAM.

195

*SRROM

*SRWRITE

*STATUS (*ST.)

*TIME (*TI1.)

*TV

*UNPLUG (*UNP.)

196

Reserve a designated area of sideways RAM for use
with absolute addressing. |

Copy a designated area of normal RAM to sideways
RAM

Display the current content of the various settings
held in the CMOS RAM. *STATUS may also be
used with one of the parameters described under

*CONFIGURE (above), in which case only the
specified setting is displayed. For example:

*STATUS displays the setting of the keyboard

DELAY auto-repeat delay held in the CMOS
RAM:;

*STATUS displays all the settings held by the
CMOS RAM.

Display the current day, date and time from the
CMOS RAM.

Two parameters are used, the first indicating an
adjustment to the vertical screen alignment; the
second defining the setting of the interlace option.
For example:

*TV0@, 1 causes no vertical screen adjustment
but sets the interlace off;

*TV1,0 causes the screen to be shifted up one
line and sets the interlace on;

*TVZ255,1 causes the screen to be shifted down

one line and sets the interlace off.

Cause the MOS to ignore the ROM in a specified
socket after the next hard break or power-on.

Appendix D

*FX commands

A proportion of the memory reserved for use by the MOS is given over to the
storage of information relating to the current state of the machine and how it is
to react in various circamstances. This information is directly accessible to, and
may be changed by the user by means of special operating system calls (often

referred to simply as OSBYTE calls).

Some OSBYTE calls have an equivalent *FX command which may be issued
directly from the keyboard or included in, say, a BASIC program and these
commands are summarised below. Commands marked T provide access to
facilities required only by advanced users and full details can be found in the
Reference Manual.

Apparent gaps in the sequence relate to OSBYTE calls which do not have an
equivalent *FX command and which must therefore be implemented by means
of techniques beyond the scope of this guide.

Parameters in *FX commands may be separated by a comma (as in the
examples below) or a sequence of one or more spaces.

If a parameter i1s omitted it is assumed to be zero.

*FX0 Display MOS version.
*FX1 (1 Reserved for application programs.
*FX2 Select input stream:

*FX2,0 keyboard only (disables R5423input);
*FX2,1T RS423 input only;
*FX2 ,2 keyboard input and buffered R5423 input.

*FX3 Select output stream:

*FX3,0 Printer and screen only;
*FX3,1 Printer, screen and R5S423;
*FX3,2 Printer only;

*FX3,3 Printer and RS423;

*FX3,4 Screen only;

*FX3,5 Screen and RS423;

*FX35,6 none;

*FX3,7 RS423 only.

0 Other values may also be used.

197

*xFX4 Enable/disable cursor editing:

*FX4,0 enable cursor editing;
*FX4,1 disable cursor editing and assign ASCII

codes:

135

— 136

—> 137

b 138

7 139

*FX4 ,2 disable cursor editing and assign soft key numbers:

[copy| 11

— 12

— 13

! 14

7 15

*FX5 Select printer type (see page 177):

*FX5,0 selects printer sink (no printing);
*FX5,1 selects parallel printer;
*FX5,2 selects serial printer;

0 *FX5,3 selects user printer routine;
*FX5,4 selects network printer server.

Printer types higher than 4 should not be used.

The default setting can be set using *CONFIGURE PRINT (see
page 192).

*FX6 Select printer 1gnore character (equivalent to *IGNORE).
For example:

*FX6,10 prevents line feeds (ASCII 10) being sent to the

printer.
*FX7 0O Select RS423 receive rate.
*FX8 0 Select RS423 transmit rate (see page 177).
*FX9 Set flash rate of first colour in fiftieths of a second (default

setting 25).

*FX9,0 disables flashing and forces the first colour on the
screen;
*FX9,180 sets the flash rate to one fifth of a second.

198

*FX10

*FX11

*FX12

*FX13
*FX14
*FX15

*FX16
*FX17
*FX18
*FX19
*FX20

*FX21

(]

Set flash rate of second colour 1n fiftieths of a second (default
setting 25).

*FX10 ,0 disables flashing and forces the second colour on the
screen;
*FX10,5 sets the flash rate to one tenth of a second.

Set keyboard auto-repeat delay in hundredths of a second
(default setting 32 or as set by *CONFIGURE DELAY).

*FX11,0 disables auto-repeat;
*FX11,10 sets auto-repeat delay to one tenth of a second.

Set keyboard auto-repeat period in hundredths of a second
(default setting 8 or as set by *CONFIGURE REPEAT).

*FX12 ,8 restores default settings of auto-repeat delay and
auto-repeat period.

*FX12,3 sets auto-repeat period to three hundredths of a
second.

Disable various events.
Enable various events.
Flush buffers:

*FX15,0 flushes all bufters;
*FX15,1 flushes current input buffer.

Select number of ADC channels.

Select next ADC channel to be sampled.
Clear user-defined function key definitions.
Wait for vertical synchronisation.

Restore default font definitions 1.e. reset the characters
corresponding to ASCII codes 32 to 126 to normal.

Flush selected buffer:

*FX21,0 keyboard buffer;
*FX21,1 RS423 input buffer;
*FX21,2 RS423 output buffer;
*FX21,3 printer buffer;

*FX21,4 sound channel O;
*FX21,5 sound channel 1;

AK9 *FX21,6 sound channel 2;
*FX21,7 sound channel 3.

199

*FX22
*FX23
*FXZ5

*FX107

*FX103

*FX109
*FX112

*FX113

*FX114

*FX118
*FXT119

200

1
| —

Increment ROM polling semaphore.
Decrement ROM Polling semaphore.
Restore a group of font definitions:

*FX25,0 restore character codes between 32 and 255;
*FX25,1 restore character codes between 32 and 63;
*FX25,2 restore character codes between 64 and 95;
*FX25,3 restore character codes between 96 and 127;
*FX25,4 restore character codes between 128 and159;
*FX25,5 restore character codes between 160 and 191;
*FX25,6 restore character codes between 192 and 223;
*FX25,7 restore character codes between 224 and 255.

Select internal or external 1MHz bus:

*FX107 ,0 selects external bus;
*FX107 ,1 selects internal bus.

Switch main / shadow memory into main map:

*FX108,0 switches main memory into main map (immediate);
*FX108 ,1 switches shadow memory Into main map
(immediate).

Make temporary filing system permanent.

Select memory to which characters will be written until the
next mode change:

*FX112,0 writes to memory specified by the mode change;
*FX112,1 writes to main memory (immediate);
*FX112 ,2 writes to shadow memory (immediate).

Select memory to be displayed until the next mode change:

*FX113,0 displays the memory specified by the mode change;
*FX113,1 displays main memory (immediate);
*FX113,2 displays shadow memory (immediate).

Select main / shadow memory in subsequent mode changes
(equivalent to *SHADOW):

*FX114 ,0 forces selection of shadow memory;
*FX114 ,1 selects main/shadow memory according to mode
number.

Retlect keyboard status in keyboard LEDs.
Close any *SPOQOL / *SPOOLON / *EXEC files.

*FX120
*FX124
*FX125
*FX126
*FX136
*FX137

*FX138

*FX139
*FX140

*FX141
*FX142
*FX143
*FX144

*FX146-
*FX151

*FX153
*FX154
*FX155
*FX156

Write ‘keys pressed’ information.

Acknowledge ‘escape condition’ without side effects.

Set ‘escape condition’.

Acknowledge ‘escape condition’ with side effects.

Define entry point for user MOS routine (equivalent to *CODE).
Switch cassette relay (equivalent to *MOTOR):

*FX137 ,0 switch relay OFF;
*FX137,1 switch relay ON.

Insert character code into buffer. (See *FX21 for a list of buffer
numbers.) For example:

*FX138,0,65 places ASCII 65 (A) into the keyboard buffer.
Select option value (equivalent to *OPT).

Select cassette filing system and baud rate (equivalent to
*TAPE }):

*FX140,3 sets the transfer rate to 300 baud;
*FX148,12 sets the transter rate to 1200 baud.

Select ROM filing system (equivalent to *ROM).
Enter language ROM.
Issue paged ROM service request.

Set vertical screen shift and interlace option for next mode
change or break (equivalent to *TV). For example:

*FX144,0,1 gives no screen shift and turns the interlace off;

*FX144,1,0 shifts the screen up by one line and turns the
interlace on;

*FX144 ,255 shifts the screen down by one line (and turns the
interlace on).

 Access memory-mapped /O areas.

Insert character code into buffer, checking for ESCAPE.
Write to Video ULA control register.
Write to Video ULA palette register.
Write to 6850 ACIA control register.

201

*FX157
*FX167
*FX178
*FX179
*FX130
*FX181
*FX183
*FX190
*FX191
*FX193
*FX194
*FX195
*FX196
*FX197
*FX198
*FX199
*FX200

*FX201
*FX202
*F X203
*FX204
*FX205

*FX2006-
*FX208

*FX210

202

Write byte across Tube.

Write to CMOS RAM.

Disable keyboard scanning.

Write ROM polling semaphore.

Write Operating System High Water Mark (OSHWM
Write RS423 mode.

Write cassette/ROM filing system switch.

Set ADC resolution.

Write RS5423 use flag.

Write flash counter.

Write mark period count.

Write space period count.

Write keyboard auto-repeat delay.

Write keyboard auto-repeat period.

Write *EXEC file handle.

Write *SPOOL file handle.

Set BREAK and ESCAPE effect according to n:

*FX200,0 set normal BREAK and ESCAPE action;
*FX200,1 set normal BREAK and disable ESCAPE;

).

*FX200 ,2 clear memory on BREAK and set normal |
action;

LSCAPE

*FX200,3 clear memory on BREAK and disable ESCAPE.

Write keyboard disable.

Write keyboard status byte.

Write RS423 handshake extent.
Write RS423 input suppression flag.
Write cassette/RS423 selection flag.
Used by Econet.

Write sound suppression status:

*FX210,8 enables sound output;
*FX219,1 disables sound output.

*FX211

*FX212

*FX213

*FX214

*FX215
*FX216
*FX217
*FX218
*FX219

*FX220

*FX221-
*FX224

*FX225

Write BELL (] ctr. [+ G) channel (default setting 3). For
example:

*FX211,0 selects channel 0.

Write BELL (] ¢crrL |+ G) sound information (default setting
144). For example:

*FX212 ,200 produces a ‘softer’ BELL sound.

Write BELL (| ctr [+ G) frequency (default setting 101). For
example:

*FX213,208 produces a high-pitched BELL sound.

Write BELL (| ctr. [+ G) duration (default setting 7). For
example:

*FX214, produces a very short BELL sound;
*FX214 ,255 produces an indefinite BELL sound.

Write start-up message suppression and !BOOT option status.
Write length of soft key string.
Write number of lines printed since last page halt.

Write number of items in VDU queue.

Write character value returned by (default setting 9, 1.e.
cursor right). For example:

*FX219,127 makes | 1a8 | equivalent to [peLere]

Write ESCAPE character (default setting 27). For example:
*FX220,32 makes [SPACE BAR] the |escare] key.

Write input buffer code interpretation status.

Write function key status:

*FX225,8 disables the function keys;
*FX225,1 gives the keys their normal function of generating
strings;

The function keys may also be set to generate a single ASCII
code using *IX225,n (where n is the base number in the range
2 — 25b). This has the effect of assigning ASCII n to | f |,
ASCII n+1to| s |, ASCII n+2 to etc. So, for example:

*FX225,65 causes to generate ASCII 65 (A), [#] to
generate ASCII 66 (B),| £] to generate ASCII 67
(C) etc.

203

*FX226

*FX227

*FX228

*FX229

*FX230
*FX231
*FX232
*FX233
*FX236
*FX257
*FX233

*FX241
*FX244
*FX245
*FX246

*FX247-

*FX249

204

[]

Set base number for [shiFT]+function key depressions (default
setting 128). For example:

*FX226,97 causes [suirt]+{ o] to generate ASCII 97 (a),
[sHirT]+| # | to generate ASCII 98 (b) etc.

Set base number for | ctr. |+ function key depressions (default
setting 144). For example:

*FX227 ,48 causes |cmrL |[+| © | to generate ASCII 48 (0),
| ctaL |+ £ | to generate ASCII 49 (1) etc.

Set base number for |sHier]+| ctrL |+ function key depressions
(default setting: no effect). For example:

*FX228,200 causes [sHIFT]+]ctrL |+]| f | to generate ASCII
200, [swirt]+[et 4] # | to generate ASCII 201
etc.

Write ESCAPE key status:

*FX229,0 gives [escape] its normal function;
*FX229,1 causes [escape] (or the key selected by
*FX220) to generate its ASCII code.

Write flags determining ESCAPE effects.
Write IRQ bit mask for user 6522.

Write IRQ bit mask for 6850 (RS423).
Write interrupt bit mask for system 6522.
Write character destination status.

Write cursor editing status.

Set base number for numeric keypad (default setting 48 for
keypad 0).

Not used
Write soft key consistency flag.
Write printer destination flag.

Write printer ignore character.

Intercept BREAK vector.

*FX254 Set effect of on numeric keypad:

*FX254 ,0 causes to operate (1.e.

[swrr]+keypad O generates !);
*FX254,1 makes have no effect.

*FX255 0 Write start-up options.

205

Appendix E

Filing system commands

Listed below are the commands available under the various filing systems. In
reality, many of the commands are handled by the MOS but, for the sake of
completeness, such commands are listed (and duplicated) under each filing
system heading.

Most commands may be abbreviated to their first few characters terminated by
a . - where applicable, the minimum abbreviation for each command is given in
brackets after each command name.

Commands marked O apply to facilities required only by advanced users; full
details can be found in the Reference Manual.

The Cassette Filing System

*BUILD (*BU.) Create a cassette file containing lines of text typed in
by the user. Each line must be terminated by
[return]; the end of input i1s indicated by pressing
Jescare]. For example:

*BUILD START <creates a file called START
containing lines subsequently
typed by the user.

CAT (.) Display a catalogue (i.e a list of filenames plus other
information) of the current cassette.
*CLOSE (*CL.) Close all currently open cassette files.

*DUMP (*D.) Produce a hexadecimal dump of the named cassette
file. For example:

*DUMP MYFILE produces a dump of file MYFILE.

*EX 0 Similar to *CAT (above) except that it provides
additional information about each file.

*EXEC (*E.) Cause the MOS to take input from the named
cassette file rather that the keyboard. For example:

*EXEC START causes the MOS to take input from file
START.

206

* L IST (*LI.)

*LOAD (*L.)
*OPT1 (x0.1)

*OPT2 (*x0.2)

QPT3 (@.3)

*PRINT (*P.)

*RUN

*SAVE (*S.)
*SPOOL (*SP.)

*SRLOAD

*SRSAVE

-

Display the content of the named cassette file in
GSREAD format with line numbers.

Load the named cassette file into memory.
Adjust the level of output during file operations:

*0PT1,0 suppresses output of all information;

*0PT1,1 allows output of the filename, block count
and length;

*0PT1,2 allows output of the filename, block count,
length, load address and execution address.

Set the action to be taken in the event of an error
during loading:

*0PT2,8 1gnores all errors;

*0PT2,1 prompts the user to rewind the tape;

*0PT2,2 aborts the load and issues an error
message.

Set the length of the inter-block gap when writing
sequential files.

Display a pure ASCII dump of the named
cassette file.

Load and execute the named machine code program
from cassette. For example:

*RUN PANEL

Save a block of memory to a named cassette file.

When used with a filename, *SPOOL causes all
subsequent output to the screen to be written to the

named file; *SPOOL on its own closes the current
*SPOOL file. For example:

*SPOOL LISTING opens file LISTING and directs all
subsequent output to it;
*SPOOL closes the current *SPOOL file.

Load the specified file into a designated area of
sideways RAM.

Save a designated area of sideways RAM to the
specified file.

207

*TYPE (*TY.) U Display the content of the named cassette file in
GSREAD format without line numbers.

The ROM Filing System

The commands listed below operate in exactly the same manner as described
under the Cassette Filing System.

CAT (.)
*CLOSE (*CL.)
*DUMP (*D.)
*EX

*EXEC (*E.)
*.IST (*LI.)
*LOAD (*L.)
*OPT1 (*x0.71)
*PRINT (*P.)
*SRLOAD
*RUN

*TYPE (*TY.)

The Disc Filing System

Unless stated otherwise, all commands operate on the current drive and the
current directory (see page 155).

Certain commands allow the use of a wildcard facility, in which the character *
may be used to denote a sequence of any characters and the character # may be
used to note any single character.

*ACCESS (*AC.) Disc files may be ‘locked’ to prevent accidental
erasure. TACCESS locks or unlocks the named file,

for example:

*ACCESS MYPROG L Jocks file MYPROG;
*ACCESS MYPROG unlocks file MYPROG.

*APPEND (*AP.) Extend files created using *BUILD by the addition of
extra lines. For example:

*APPEND START adds subsequent lines of input to file
START.

*BACKUP (*BAC.) Make a copy of a complete disc surface.

*BACKUP takes two parameters, the first being the
‘source drive’; the second the ‘destination drive’. For
example:

208

*BACKUP @ 1 copies the contents of drive 0 onto the
disc 1n drive 1 (assuming two drives
are avallable);

*BACKUP @ @ copies the contents of a disc onto
another using a single drive. The user
is prompted to exchange the source
and destination discs.

*BUILD (*BU.) Create a disc file using subsequent lines of input as
described under the Cassette Filing System.

CAT (.) Display a catalogue of the current drive.
*CLOSE (*CL.) Close all currently-open dise files.
*COMPACT (*COM.) Reorganise the files stored on the gpecified drive so

that spaces created by file deletions (see *DELETE)
are amalgamated into one block. For example:

*COMPACT @ compacts drive 0.
*COPY Copy a file from one drive to another. For example:

*COPY @ 1 LETTER copies file LETTER on drive O to

drive 1.
*CREATE 0 Reserve space for a file.
*DELETE (*DE.) Delete the name of the specifed file from the current

drive’s catalogue. (The space occupied by the file

contents is not reallocated until the disc is compacted
using *COMPACT). For example:

*DELETE OLDPROG deletes the name OLDPROG from
the current drive’s catalogue.

*DESTROY (*DES.) Delete a group of files in a single operation using the
‘wildcard’ facility. For example:

DESTROY OLD deletes all files whose names begin
with the characters OLD.

*DIR Set the current directory to the character specified,
For example:

*DIR W sets the current directory to W;
*DIR :1.B selects drive 1 and assigns directory B.

209

*DRIVE (*DR.)

*DUMP (*DU.)

*ENABLE (*EN.)

*EX

*EXEC (*E.)

*FORM (*FOQ.)

*FREE (*FR.)

*INFO (*I.)

210

Set the current drive to the number specified, for
example:

*DRIVE 1 selects drive number 1.

Display a hexadecimal dump of the named disc file
as described under the Cassette Filing System.

As a security measure, the *BACKUP, *DESTROY
and *WIPE commands mnormally produce the
prompt:

Go ? (Y/N)

before any action 1s taken. Issuing a *ENABLE
command 1mmediately prior to these commands
suppresses the prompt.

Display information about the files held in the
specified directory.

Cause the MOS to take subsequent input from the
named disc file rather than from the keyboard, as
described under the Cassette Filing System.

Format a blank disc for use with the Disc Filing
System. The first parameter determines whether the
disc is to be formatted as a 40-track or an 80-track
disc; the remaining parameters are a list of drive
numbers. For example:

*FORM 40 @ formats the disc in drive 0 as a
40-track disc;

*FORM 80 3 2 formats the discs in drives 0 and 2 as
80-track discs.

Each track is verified after formatting (see
*VERIFY below).

Display information about the free space available
on the specified drive. For example:

*FREE 1 displays free space information for drive 1;
*FREE displays free space information for the
current drive.

As for *EX except that information may be obtained
for single files (or groups of files, using the ‘wildcard’
option).

*LIST (*LI.) 0 Display the content of the named file in GSREAD
format with line numbers.

*xL1IB Set the library directory (see page 158).

*LOAD (*L.) 0 Load the named disc file into memory.

*MAP Display the free-space map for the specified drive, for
example:

*MAP 3 displays the free space map for drive 3;
*MAP displays the free-space map for the current
drive.

*0PT1 (*0.1) Set the level of reporting during file operations:

*0PT1,0 supresses all messages;

*0PT1,1 allows output of the filename, load address,
execution address, lengthand track/sector
location on the disc.

*OPT4 (*x0.4) Set the effect of the auto-boot option:

*QPT4 ,0 switches the auto-boot option off;
*0PT4,1 *LOADs !BOOT into memory;
*0PT4,2 *RUNs 'BOOT;

*0PT4,3 *EXECs 'BOOT.

*PRINT (*P.) 0 Display a pure ASCII dump of the named disc file.

*REMOVE (*RE.) Equivalent in effect to *DELETE, except that the
Not found message is suppressed if the named file
cannot be located.

*RENAME (*REN.) Change the name of a disc file. For example:
*RENAME NEWPROG OLDPROG
Changes the name of file NEWPROG to OLDPROG.

*RUN Load and Execute the named machine code
program. For example:

*RUN PANEL

Under the Disc Filing System, a command like that
above may be abbreviated to:

*PANEL

*SAVE (*S.) 0 Save a block of memory to the named disc file.

211

*SPOOL (*SP.)

*SPOOLON

*SRLOAD

*SRSAVE

*TITLE (*TIT.)

*TYPE (*TY.)

*VERIFY (*V.)

*WIPE (*W.)

Cause all subsequent output to the screen to be
written to the named disc file, as described under the
Cassette Filing System.

Extend an existing *SPOOLfile. For example:

*SPOOLON LISTING appends all subsequent output to
the screen to file LISTING.

The file 1s closed with *SPOQOL as described under
the Cassette Filing System.

Load the specified file into a designated area of
sideways RAM.

Save a designated area of sideeways RAM to the
specified file.

Set the disc title for the current drive to the specified
sequence of characters. For example:

*TITLE BASIC-PROGS sets the disc title to BASIC-
PROGS.

Display the content of the named disc file in
GSREAD format without line numbers.

Check the formatting of each sector on the specified
drive. For example:

*VERIFY @ verifies the formatting of the disc in drive
0

*DELETE files specified using the ‘wildcard’ facility
— the user must respond with Y (to delete) or N (to
retain) each file.

The Advanced Disc Filing System

Unless stated otherwise all commands operate on the currently selected

directory.

Many Advanced Disc Filing System commands allow the use of the wildcard

facility described above.

212

*ACCESS (*AC.)

*APPEND (*AP.)

*BACK

*BUILD (*BU.)

*BYE

CAT (.)

*CDIR (*CD.)

*CLOSE (*CL.)
*COMPACT (*COM.)

Set the attributes associated with files. The
attributes are:

E for ‘execute-only’ access (for machine-code
program files only);

L for locking a file;

W for write access:;

R for read access.

For example:

*ACCESS MEMO L locks file MEMO);
*ACCESS DADSPROG WR assigns read/write access to
file DADSPROG.

Extend files created using *BUILD (below) as
described under the Disc Filing System:.

Instruct the Advanced Disc Filing System to select
the previously-accessed directory and make it the
current directory.

Create a disc file containing subsequent lines of
input as described under the Cassette Filing System.

Ensure that all currently open files are closed at the
end of a session (similar in effect to *CLOSE).

Display the filenames in the current or a specified
directory. For example:

*CAT displays the catalogue for the current
directory;

*CAT $.DAVE displays the catalogue for directory
DAVE (which is subordinate to the

root directory.

Create a subordinate directory with the specified

name 1n the current diectory. For example:

*CDIR MARY creates a directory called MARY in the
current directory.

Close all currently-open disc files.

Reorganise the files in the directory heirarchy so

‘that spaces created by file deletions are

amalgamated into larger blocks.

213

*COPY

*CREATE
*DELETE (*DE.)

*DESTROY (*DES.)
*DIR

*DISMOUNT
(xDISM.)
*DUMP (*DU.)
*EX

*EXEC (*E.)
*FREE (*FR.)

*INFO (*I.)

*_.CAT (*LC.)
*LEX

214

It 1s possible to define the area of memory to be used
during a *COMPACT.

Copy a file from one directory to another. For
example:

*COPY $.TEXT $.BACKUP.VIEW

coples the file TEXT (in the root directory) into
directory $.BACKUP.VIEW 1.e. 1t creates a file
whose full pathname 1s $. BACKUP.VIEW. TEXT

Reserve space for a file.
Delete the name of the specified file. For example:

*DELETE IDEA deletes file IDEA from the
current directory;
*DELETE $.DAVE.B1 deletes file Bl from directory

DAVE (tself in the root
directory).

A directory may be deleted only if it 1s empty.
Delete a group of files(using the wildcard facility).
Set the current directory (see page 161).

Ensure that all currently-open files are closed prior
to changing a disc.

Display a hexadecimal dump of the named file, as
described under the Cassette Filing System.

Display information about the files contained in the
specified directory.

Cause the MOS to take subsequent input from the
named disc file rather than the Kkeyboard as
described under the Cassette Filing System.

Display the free space map.

Display information about a single file (or a group of
files) using the ‘wildcard’ option.

Display a catalogue of the library directory.

Display information about the files held in the
library directory.

* 1B

*LIST (%L1.)

* L OAD (*L.)
*MAP
*MOUNT (*MQU.)

*OPT1 (%x0.1)

*0PT4 (%0.4)

*PRINT (*P.)
*REMOVE (*RE.)

*RENAME (*REN.)

*RUN

*SAVE (*S.)

O

Set the lhibrary to the specified drive and directory.
For example:

*LIB $.UTILITIES

Display the named disc file in GSREAD format with
line numbers.

Load the specified file into memory.
Display the free-space map.

Initialise a disc drive — commonly used to switch
between more than one drive.

*MOUNT @ 1nitialises drive O.
Note that *MOUNT 0 1s equivalent to *DIR :0

Set the reporting level during file operations as
described under the Disc Filing System.

Set the operation of the auto-boot option, as
described under the Disc Filing System.

Display a pure ASCII dump of the named file.

Equivalent in effect to *DELETE, except that the
Not found message 1s suppressed it the file cannot
be located.

Change the name of a disc file. For example:

*RENAME PROG1 PROGZ

changes the name of file PROG1 to PROG2 (in the
current directory).

*RENAME can also be used to physically move
(rather than copy) a file from one directory to
another. For example:

*RENAME $.BASIC.THIS $.GARBAGE.THAT

moves file THIS from directory $.BASIC to directory
$.GARBAGE and renames it THAT.

Load and Execute a machine code program as
described under the Disc IFFiling System.

Save a block of memory to the named disc file.

215

*SPOOL(*SP.)

*SPOOLON

*SRLOAD

*SRSAVE

*TITLE (*TIT.)

*TYPE (*TY.)

Cause all subsequent output to the screen to be
written to the named disc file as described under the
Cassette Filing System.

Append all subsequent output to the screen to the
named disc file as described under the Disc Filing
System.

Load the specified file into a designated area of
sideways RAM.

Save a designated area of sideways RAM to the
specified file.

Set the title for the current directory. For example:

*TITLE WOBLETS

Note that a directory title is distinct from a directory
name.

Display the content of the named disc file in
GSREAD format without line numbers.

The following Advanced Disc Filing System utilities are provided on the
Welcome disc. They may be accessed via the menu system, by typing:

*ADFS[reTurn]

CHAIN"UTILITIES" [ReTurN]

and selecting the ADFS utilities option. The menu system also provides help
regarding both the syntax and operation of each utility.

Alternatively, each utility may be executed individually as required. Those
utilities whose names begin with * are machine code programs; the remainder
are BASIC programs which must be executed using etther LOAD and RUN or

CHAIN.
*AFORM
*BACKUP
CATALL

COPYFILES

DIRCOPY

216

Formats a floppy disc in ADFS format.
Copies the contents of one disc onto another.

A BASIC program which produces a listing of the
contents of all the directories on a disc.

A BASIC program which copies files from one filing
system to another.

A BASIC program which copies the entire contents

of a specified directory (and all its subordinate

directories) to another directory.

EXALL A BASIC program which displays information
stimilar to that produced by *EX for all the
directories on a disc.

HARDERROR A BASIC program which enables permanent floppy
disc errors to be 1ignored by the filing system.

RECOVER A BASIC program which enables a file, or part of a
file to be recovered in the event of accidental
erasure.

*VERIFY Verifies the formatting on a disc.

217

Appendix F

BASIC keywords

Each BASIC keyword is described briefly below. If an abbreviated form of the
keyword is allowed, it 1s given in brackets after the full version. Note that the
abbreviation for some keywords includes an opening bracket; for example LE.

1s equivalent to L]

CET$(and not just LEFTS.

Many of the keywords are explained in more detail in Chapter 2. Keywords

marked U provide

access to facilities beyond the scope of this guide and users

should consult the Reference Manual for further information.

ABS
ACS

ADVAL (AD.)
AND (A.)
ASC

ASN

ATN

AUTO (AU.)
BGET# (B.#)
BPUT# (BP.#)
CALL (CA.)
CHAIN (CH.)
CHR$

CLEAR (CL.)

218

Function giving the positive value of any number.

Function giving the arc-cosine, in radians, of any
number from —1 to 1 inclusive.

0 Read data from the analogue port or buffers.
Used as a logical or bitwise operator.

Function producing the ASCII code of the first
character 1n a string.

Function giving the arc-sine, in radians, ol any
number from —1 to 1 inclusive.

Function giving the arc-tangent, In radians, of any
number.

Command to give automatic line-numbering.
0 Give the code of the next character in a file.
0 Write the code of a character to a file.

Execute a machine-code routine.

Load and run a BASIC program.

Function producing the character with the given
ASCII code.

Clear the memory of all program variables, except
the resident integer variables.

CLG

CLOSE# (CLO.#)
CLS

COLOR or

COLOUR (C.)

COS

COUNT

DATA (D.)

DEF
DEG
DELETE (DEL.)
DIM

DIV

DRAW (DR.)

EDIT

ELSE

END

ENDPROC (E.)

ENVELOPE
(ENV.)

EOQOF#

Clear the graphics window to the current graphics
background colour.

Close an open file.

Clear the text window to the current text
background colour.

Set the text foreground or background colours.

Function giving the cosine of any angle, the angle
being in radians.

Variable containing the number of characters
printed since the last new line.

Used in conjunction with READ to specity data items
to be used in a program.

Define a function or procedure.

Function which converts from radians to degrees.
Delete a number of lines from a program.
Reserve memory space for an array of given size.

Carry out integer division, any remainder being
discarded.

Draw a line from the last graphics point specified to
the given point.

Call the text editor and convert the BASIC program
into a text file if there 1s sufficient room 1n memory.

Part of the extended IF.. THEN statement used
when an alternative decision may be required.

The computer executes no further statements after
it reaches the EN] statement. Its use is optional if
the END statement is physically the last statement
in the program.

Indicate the end of a procedure definition.

Define a sound envelope.

Function indicating whether the end of a file has
been reached.

219

EOR
ERL
ERR
ERROR (ERR.)

EVAL (EV.)

EXP

EXT#

FALSE (FA.)

FN

FOR (F.)

GCOL (GC.)

GET

GETS

GOSUB (GOS.)

GOTO (G.)

220

Used as a logical or bitwise exclusive OR.
(zive the line number where the last error occurred.

(;1ve the error number of the last error.
Part of the ON.. ERROR statement.

Function which evaluates a string as if it were a
BASIC calculation.

Function which calculates e (which 1s 2.7183..)
raised to the given power,

Function which controls the length (extent) of an
open file — note that this has no relevance for
cassette files.

Function returning the value 0. Used in logical
expressions.

Used in the definition of a function or a call to that
function.

Start of the FOR..NEXT loop which causes the
computer to repeatedly execute the statements
between the FOR and the NEXT..

Set the graphics colour to be used by future graphics
commands, and determine the way the colour
interacts with the colour of any point in the same
position on the screen.

Wait for a key to be pressed and produce the ASCII
code for that key.

Wait for a key to be pressed and produce the
character for that key.

Execute a subroutine then return control to the
statement following the GOSUB call. GOSUB is a
more limited predecessor of DEFPROC, and does not
allow the passing of parameters. It is includeed for
compatability with the BASIC language on other
computers.

Jump to the given line number.

HIMEM (H.)

IF

INKEY

INKEY$ (INK.)

INPUT (1.)

INPUT LINE

INPUT# (I.#)

INSTR (INS.)

INT

LEFT$((LE.)
LEN
LET

LIST (L.)

LN

LOAD (LO.)

Variable used to indicate the highest free memory
location which can be used by the current program.
HIMEM can be reset by the user so as to protect a
portion of memory above HIMEM where data has
been stored.

Part of the IF... THEN statement. The computer only
executes the instruction after THEN if the condition
following IF 1s true.

Wait for a given time for a key depression, and
produce the ASCII code for that key. The time is
expressed in hundredths of a second.

Wait for a given time for a key depression, amd
produce the charActer for that key. The time 1s
expressed in hundredths of a second.

Wait for an input or inputs from the keyboard
terminated by RETURN.

Accepts, from the keyboard, a single input
containing leading or trailing spaces or commas,

terminated by RETURN.

Input data from an open file and store the data in the
variables following the INPUT# statement.

Search one string for occurrences of another string,
and give the character position where the matching
string begins.

Function which converts a decimal number into the
nearest integer smaller than the original number.

Extract the left part of a string.
Function which gives the length of a string.

Set a variable to a given value. The use of LET 1is
optional in BBC BASIC.

List the current program. LISTO sets the
indentation options to make the program easier
toread. LIST IF is used to list all lines containing a
particular character sequence.

Function which gives the natural logarithm of a
number.

Load a BASIC program.

221

LOCAL (LOC.)

LOG

LOMEM (LOM.)

MID$((M.)
MOD

MODE (MO.)
MOVE

NEW

NEXT (N.)
NOT

OFF

oLD (0.)
ON ERROR

ON...GOTO or
ON...GOSUB

222

Declare the variables that follow as local only to that
procedure or function. Thus they will not interfere
with similarly named variables elsewhere in the
program. Parameters passed to a procedure are
automatically local.

Function which gives the logarithm of a number to
base 10.

Variable used to indicate the lowest free memory
location which can be used to store the value of
variables used by the program. LOMEM can be reset
by the user.

Extract a substring from a longer string.
(Give the integer remainder after a division.

Change the display mode. Mode cannot be changed
within a procedure or function.

Move the graphics cursor invisibly to the given
position.

Remove the current program. It can be retrieved
using OLD.

Part of the FOR...NEXT loop indicating the end of
the statements which are to be repeatedly executed.

Used as a logical or bitwise operator.

Part of the ON ERROR OFF statement which
switches error trapping off and enables the computer
to again print its standard error messages and halt
the program.

Retrieve a program after a NEW or after BREAK
has been pressed. If typing OLD gives a ‘Bad
Program’ message after the BREAK key has been
pressed, the program has been corrupted and must
be loaded again from tape or disc.

Used to control the action taken by the computer if it
encounters an error in the program.

The value of the variable following ON is found. If its
value 1s 1, the computer jumps to the first line
number in the list following the GOTO/GOSUB
statement; if the value i1s 2, it jumps to the second
line number, and so on.

ON...PROC

OPENIN (OP.)
OPENOUT (OPENQ.)
OPENUP

OR
OSCLI
PAGE (PA.)

PI

PLOT (PL.)

POINT((PO.)

POS
PRINT (P.)

PRINT# (P.#)

PROC
PTR#

RAD

]

Used to give a multi-branching facility and enable
one of a series of procedures to be executed.

Open a file for input only.
Open a file for output only.

Open a file for updating (input and output). This 1s
not possible with cassette files.

Used as a logical or bitwise operator.
Used to pass a string to the operating system:.

Variable used by the computer to indicate the
memory location at which storage of the program
begins. PAGE can be reset by the user, so with care
it 1s possible to have several programs in the
computer memory at the same time.

Give the value of pi (3.141592653) for use in
calculations.

Carry out a plotting function according to the

parameters following the PLOT command (see the
full hst of PLOT codes in Appendix H).

(Give the logical colour number at a particular
graphics point.

(mive the current x coordinate of the text cursor.

Print characters to the screen. The format of
printing is affected by the use of ; , ' and the
printing of numbers is controlled by the value of the
integer variable @%.

Print the variable values following PRINT# to an
open file.

Define or call a procedure.

Function which gives the position within a file where
the next characters will be read or written. The user
can change the value of PTR# and can thus read or
write anywhere within the file, allowing random
access to records. This i1s only possible on disc, and
has no relevance for cassette files.

Function which converts an angle from degrees to
radians.

223

READ

REM

RENUMBER (REN.)

REPEAT (REP.)

REPORT (REPO.)

RESTORE (RES.)

RETURN (R.)

RIGHT$((RI.)

RND

RUN

SAVE (SA.)

SGN

SIN

SOUND (S0.)
SPC

224

Read 1items from a DATA statement.

A remark to help document the program. REMs are
ignored by the computer on execution of the
program.

Assign default (or specified) line numbers to a
BASIC program.

Part of the REPEAT...UNTIL loop which executes
all statements between REPEAT and UNTIL until a
condition or conditions are satisfied. Note that such a
loop 1s always executed at least once, even if the
terminating conditons are met immediately, as the
test for the conditions comes at the end of the loop.

Print an error message for the most recent error
found.

Read further data beginning at the line number
following the RESTORE.

Indicate the end of a subroutine which has been
called using GOSUB. The computer returns to the
statement In the program which is immediately after

the GOSUB which called the routine.

Extract the right-hand part of a string from a longer
string.

Function which produces a random number. RND(1)
gives a random decimal from 0 to 0.99999. RND(N)
gives a random integer from 1 to N inclusive.

Execute the program in memory.

Save a program 1n the computer’s memory to
cassette or disc.

Function which gives the sign of the number
following, producing —1 for minus numbers, 0 for
zero and +1 for positive numbers.

Function which gives the sine of any angle, the angle
being in radians.

Produce a sound through the internal loudspeaker.

Used only with PRINT or INPUT to print multiple
spaces.

SAR

STEP

STOP

STRY

STRINGS (STRI.)

TAB

TAN (T7.)

THEN
TIME (TI.)

TIMES
TO
TOP

TRACE (TR.)

TRUE

UNTIL (U.)

USR

Function which finds the square root of the number
that follows.

Part of the FOR... TO..STEP statement which allows
a FOR..NEXT loop with steps other than 1.

Interrupt a program with the untrappable error
message STOP.

Converts a number into its equivalent string
representation.

Produce multiple copies of a string up to a maximum
length of 2565 characters.

Used only with PRINT or INPUT to position the text
cursor on the screen.

Function which gives the tangent of any angle, the
angle being in radians.

Part of the IF.. THEN statement.

Set or read the value of one of the internal clocks in
hundredths of a second.

Set or read the real-time clock.
Part of the FOR... TO..NEXT statement.

Variable giving the first free memory location after
the end of the BASIC program. TOP is usually the

same as LOMEM, but unlike LOMEM it cannot be
reset by the user.

Display the line number of each line executed. Used
for tracing errors. TRACE OFF switches trace off,
TRACE ON switches it on.

Function producing the value —1, used in logical
expressions.

Part of the REPEAT...UNTIL loop, signalling the
end of the loop. Statements between REPEAT and
UNTIL are executed repeatedly until certain
conditions are met.

Function providing a means of calling a machine
code routine designed to produce one value.

225

VAL

VDU (V.)

VPOS (VP.)
WIDTH (W.)

226

Function which converts a string into i1ts numeric
equivalent. The string is examined up to the first
non-numeric character, so a string not beginning
with a number i1s given a value of 0.

A general purpose command producing various
effects on the screen display.

Give the current y coordinate of the text cursor.

Set the width of all subsequent lines of output.

Appendix G

VDU codes

The output of text and graphics is controlled by a complex set of MOS routines
referred to as the VDU driver. The VDU driver is active unless the display
screen has been disabled using *FX3 (see page 196) or VDU 21 (see below).

The codes described below alter the the behaviour of the VDU driver and may
be used to produce a variety of effects. The most common implementation is
through the BASIC language’s VDU statement although commands to the
VDU driver may also be 1ssued directly from the keyboard by means of conitrol
key depressions (1.e. simultaneous depression of | ctaL | with another key).

Some VDU codes consist of a sequence of values. Where necessary, these extra
values must be specified for the code to take effect.

Code

VDU 0@
VDU 1

VDU 2
VDU 3
VDU 4

VDU 5

VDU 6

VDU 7

| cra |
key

A

Extra
values

0
1

Effect

Does nothing.

Send the next character to the printer only.
For example:

VDU 1,65 prints but does not display the
character A.

Enable the printer.

Disable the printer.

Write text at text cursor (1.e. restore the text
cursor and display subsequent text in normal
character positions).

Write text at graphics cursor (i.e. remove the
text cursor and display subsequent text at
graphics co-ordinates). The position of the
text cursor remains unaltered.

Re-enable screen output (i.e. enable the VDU
driver).

Emit a bleep from the speaker.

227

VDU 38

Vbu 9

VDU
VDU
VDU

VDU

VDU

VDU

VDU

VDU

VDU

228

10
11
12

15

14

15

16

17

13

H

Move the text cursor one character position to
the left.

Move the text cursor one character position to
the right.

Move the text cursor down one line.

Move the text cursor up one line.

Clear the screen and restore the text cursor to
position (0,0). (Equivalent to CLS).

Move the text cursor to the start of the
current line.

Set page mode on (i.e. suspend output at the
end of each full screen of output and wait for

the user to depress [sHiFT]).

Set page mode off (i.e. allow unrestricted
output).

Clear the current graphics area to the current
graphics background colour. (Equivalent to

CLG).

Change the foreground or background colour
for subsequent text output (equivalent to

COLOUR). In mode 5 (133), for example:

VDU 17,2 sets the text foreground colour
to Yellow.

VDU 17,129 sets the text background colour
to Red.

Change the foreground or background colours
for subsequent graphics output and define the
way in which it is to be placed on the screen

(equivalent to GCOL). In mode 2 (130), for
example:

VDU 18,0,4 changes the oraphics
foreground colour to Blue.

vbU 18,080,134 changes the ographics
background colour to Cyan.

vDU 19

VDU 20

VDU 21

VDU 22

VDU 25

Change the colour palette. VDU 19 allows
any of the 16 available colours to be assigned
to the colour numbers available in a
particular mode. In mode 0 (128) for example:

vbu 19,1,2,0,0,0 changes colour 1
(normally White) to Green.
vbu 19,0,7,0,0,0 changes colour 0
(normally Black) to White.

The three items at the end of this sequence
should always be 0.

Restore default colours (i.e. revert to white
text / graphics on a black background) and
reset the palette to its default colour
assignments.

Disable the VDU driver (1.e stop subsequent
output to the screen).

Note that | ctrL |+ U issued from the keyboard
has the effect of deleting the current line.

Select screen mode. This sequence should not
be used from the keyboard in languages such
as BASIC or from the command screens of
either View or ViewSheet. See the Reference
Manual for further information.

Miscellaneous functions.

VDU 23 provides a great many functions,
most of which are beyond the scope of this
gulde. The functions are listed below — details
of the remaining parameters are given in the
Reference Manual.

VDU 23,80 control 6845 directly
vdU 23,1 change cursor

VDU 23,2

VDU 23,3 | set full pattern-fill

VDU 23,4 patterns

VDU 23,5

VDU 23,6 set dotted line pattern
VDU 23,7 scroll window directly

vDU 23,8 clear block 1n text window

229

VDU 24
VDU 25

VDU 26
VDU 27

VDU 238
VDU 29

VDU 30
VDU 31

VDU127

230

353 sg: 99} set flash rate

VDU 23,11 restore default pattern-fills
VbU 23,12

VDU 23,13 [set simple pattern-fill

VDU 23,14 | pattern

VDU 23,15

VDU 23,16 control cursor movement
Functions 17 to 31 are reserved.

Any value greater than 31 following VDU 23
1s taken as a reference to a character which is
to be redefined (see page 91).

Define graphics window (see page 58).

Equivalent to the BASIC PLOT statement
(See Appendix H.)

Restore text and graphics windows.

Does nothing.

Note that | ctrL |+ [is equivalent to [escaprel}

Define text window (see page 57).

Define graphics origin (i.e. the position on the
screen with graphics co-ordinates (0,0). For
example:

VDU 29,640;512;

makes subsequent graphics co-ordinates
relative to (640,512) —a point roughly in the
centre of the screen.

Note the (mandatory) use of semi-colons.
Move text cursor to (0,0).

Move text cursor to a specified position
(equivalent to PRINT TAB): For example:

vDU 31,208,180 moves the text cursor to
character position 20 on line 10 (the first
character position and line being 0).

Backspace and delete (i.e. the normal action
of |oeLeTE]).

Appendix H

PLOT codes
The BASIC PLOT statement can be summarised as:

PLOT code,x,y

and its effect is to plot to the point (x,y) in a manner determined by the value of
code. An 1dentical effect can be produced using:

VDU 25, code ,x;y; (note the use of semi-colons).

The permissible PLOT codes and their effects are given (in groups of eight
codes) in Table 1. The codes within each group are obtained by adding an ‘offset’
value to the first code in the group. The offset values are as follows:

0 move relative to the previous point;

1 plot relative to the previous point In the current graphics
foreground colour;

2 plot relative to the previous point in the logical inverse colour;

3 plot relative to the previous point in the current graphics

background colour;

move to absolute position;

plot to absolute position in the current graphics foreground colour
plot to absolute position in thhe logical inverse colour;

plot to absolute position in the current graphics background
colour.

-1 O Tt w»>

The column headed Previous points contains the number of points which must
have been ‘visited’ before the corresponding PLOT statement is executed. For
example, in order to plot a rectangle, one corner must be first be visited
(perhaps using MOVE or DRAW) — the co-ordinates of the diametrically
opposite corner are specified in the PLOT statement.

Examples of various PLOT commands are given in Chapter 2, and detailed
information can be found in the Reference Manual.

231

Table 1

Plot code Effect Previous
points

§ - Solid line, includes both ends 1

8 15 Solid line, final point omitted 1

16 - 23 Dot—dash hine, includes both ends, 1
pattern restarted

24 — 31 Dot—dash line, final point omitted, 1
pattern restarted

32 — 39 Solid line, first point omitted 1

40 — 47 Solid line, both points omitted 1

48 — Bb Dot—dash line, first point omitted, 1
pattern continued

56 — 63 Dot—dash line, both ends omitted, 1
pattern continued

64 — 71 Point plot

72 - 79 Line fill left and right to non—-background

80 — 87 Triangle fill 2

88 — 95 Line fill right to background

96 - 103 Rectangle fill 1

104 — 111 Line fill left and right to foreground

112 — 119 Parallelogram fill 2

120 — 127 Line fill right to non—foreground

128 — 135 Flood until non—-background

136 — 143 Flood until foreground

144 — 151 Circle outline 1

152 — 159 Circle fill 1

160 — 167 Circular arc 2

168 — 175 Circular segment 2

176 — 183 Circular sector 2

184 — 191 Rectangle copy/move:
184 Move relative 2
185 Relative rectangle move 2
186/187 Relative rectangle copy 2
188 Move absolute 2
189 Absolute rectangle move 2
190/191 Absolute rectangle copy 2

192 — 199 Ellipse outline 2

200 — 207 Ellipse fill 2

208 — 255 Reserved

232

Appendix 1

VIEW Commands

Command screen commands

Most commands may be abbreviated to their first few characters. Where
applicable, the minimum abbreviation is given in brackets after each command

nariie.

Commands marked O apply to facilities for which detailed descriptions are
outside the scope of this guide. Full details may be found in the VIEW User

Guide.

Note that operating system and filing system commands can be issued from the
VIEW command screen.

CHANGE (C)

CLEAR (CL)
COUNT (CO)

EDIT (E)

FINISH (F)
FIELD n (FI)

FOLD

FORMAT (FOR)
LOAD (L)

MICROSPACE (MI)

[]

Find all occurrences of one target string and
change it for another. For example:

CHANGE WATER WINE
Remove all markers from the text.

Count the number of words in memory or between
markers (if specified).

Start editing a file which 1s too large to fit into
available memory (disc only).

Finish an EDIT session.

Assign the tab function to the key with ASCII
value n. (Default setting FIELD 9.)

Turn the factlity to ignore case on and off with
SEARCH, CHANGE and REPLACE. With no
parameters, FOLD tells you the current status.

Format the whole document in memory.

Load the specified file into memory replacing what
was there previously (disc only). For example:

LOAD RESIGN

Enable microspacing.

233

MODE (M)

MORE (MO)
NAME (N)

NEW
PRINT (P)

PRINTER (PRINTE)

QUIT
READ (RE)

REPLACE (R)

SAVE (SA)

SCREEN (SC)

Switch the computer into the specified screen
mode. For example:

MODE 132

Continue an editing session.

Name (or rename) the file in memory. For example:
NAME JULY12

Clear the text from memory.

Print text onto continuous stationery. PRINT (P)
by itself prints the text in memory; with filenames
it prints the contents of those files.

Load the specified printer driver into memory. For
example:

PRINTER EPSON
Abandon an EDIT session.

Read a file onto the end of the document in
memory. May be used to read a file into a document
at a point indicated by a marker. For example:

READ INDEX 1 reads file INDEX into the current
document at the point indicated by
marker 1.

Find all occurrences of one string and request the
user to confirm replacement with another. For
example:

REPLACE FAT ROTUND

Save the text in memory with the specified name.
For example:

SAVE MY-CV saves the current file with the name
MY-CV;

SAVE saves the current file with its current
name.

Display the text on the screen as it will appear
when printed. For example:

SCREEN LETTER displays the file LETTER,;
SCREEN displays the file in memory.

SEARCH (S) Search the text for the specified string. For
example:

SEARCH dog

[crve |+ # | (NEXT MATCH) to find subsequent
occurrences.

SHEETS (SH) Print the text pausing between pages for the user
to feed in the next sheet of paper. For example:

SHEETS BOOK prints file BOOK;

SHEETS prints the file in memory.
SETUP (SET) Set any or all of the text screen flags, for example:
SETUP FI selects formatting and insertion, but not
justification.
WRITE (W) Write text to disc or cassette using the specified

filename. This is slower than SAVE but can be used
with markers, for example:

WRITE PORTION 1 2 saves the section of the
current document between
markers 1 and 2.

Stored commands

These commands are used in the text screen and are placed in the command

margin by using [sHirT]+| 6 | (EDIT COMMAND).

CE fext Centre fext between the left and right margins.

RJ text Right justify fext, 1.e. aligns it to the right margin.
LJ fext Left justify text, 1.e. aligns it to the left margin.

DH 0 Define page header.

DF 0 Define page footer.

HE ON/OFF 0 Switch printing of page headings on or off.

FO ON/OFF 0 Switch printing of page footers on or off.

DM m 00 Define the start of macro m.

EM 0 End macro definition.

SRIv 0 Set register [to value v.

235

PB ON/OFF Switch page breaks on or oft (default ON).

PL n Set page length to n lines (default 66).

™ n Set top margin to n lines (default 4).

HM 1 Set header margin to n lines (default 4).

FM Set footer margin to n lines (default 4).

BM n Set bottom margin to n lines (default 4).

LM n Set left margin for printed output to n spaces

(detault 0).

LS n Set line spacing — causes n blank lines to be printed
between each line of text.

TS ON/OFF 0 Switch two-sided printing on or off.

PE Page eject. PE n may be used to perform a page
eject 1if n is greater than the number of lines
remaining on the current page.

OP 0 Odd page 1.e. give one page eject if on an even
numbered page, two if on an odd numbered page.

EP 0 Even page i.e. give one page eject if on an odd
numbered page, two if on an even numbered page.

HT -/ * n 0 Set highlight character to n.

236

Appendix J

ViewSheet Commands

Most commands may be abbreviated to their first few characters. Where
apphicable, the minimum abbreviation is given in brackets after each command
name.

Commands marked O apply to facilities for which detailed descriptions are

outside the scope of this guide. Full details may be found in the ViewSheet User
Guide.

Note that operating system and filing system commands can be issued from the
ViewSheet command screen.

CREATE (CR) 0 Create a disc file for use by READ and WRITE
within the sheet.

HEADINGS (H) 0 Indicate if user-defined headings are set.

HEADINGS OFF 0 Switch off user-defined headings.

(H OFF)

HEADINGS ON O Switch on user-defined headings.

(H ON)

LOAD (L) L.oad the specified file into memory, replacing what

was there previously. For example:

LOAD BUDGET

LW Load the specified file of window definitions.

MODE n (M) Set the screen mode specified in n. For example:
MODE 131

NAME (NA) Assign the specified name to the sheet in memory.

For example:

NAME WAGES?Z

NEW Create a blank worksheet.

PC Print out the contents of every occupied slot, with
coordinates.

PRINT (P) Print out the sheet in memory.

237

PRINTER (PRINTE)

PROTECT (PRO)

PROTECT OFF
(PRO GF)

PROTECT ON
(PRO ON)

SAVE (SA)

SCREEN (SO)

SW

238

Load the specified printer driver into memory. For
example:

PRINTER EPSON
Indicate if protection is enabled or disabled.

Disable protection.

Emable protection.

Save the current sheet under the specified
filename. For example:

SAVE SUMS saves the current sheet with the name

SUMS;
SAVE saves the current sheet with 1ts
current name.

Display the sheet in memory with current print
windows.

Save a file of window definitions.

Appendix K

Technical information

Tape recorder leads

A variety of different leads may be used to connect a tape recorder to the
computer. In the diagrams below, the numbered connections refer to DIN plug
pins, viewed towards the plug’s solder terminals:

3 . 3 5 3 -
2@ 2 2
&4 4 6

) ! 1

3 pin DIN 5 pin DIN 7 pin DIN
COMPUTER TAPE RECORDER
: . N . 7 Dln
7 pin . / ; [~ A
DIN \. S = TR DIN
3/5 pin /e ! i\) . 1 3/5 pin
DIN \e | — S . DIN

(motor control not possible)

S I

N RO @l g)
A o

2.5mm

il Fe iack
7 pin [° 3.5mm
DIN N s A [EAFUi jack
1 L IOl i

o N W) jack

239

Connector pin assignments

The pin assignments for the connections on the rear of the computer are shown
in the diagrams below. Each view 1s towards the socket, from outside the
computer’s case.

RGB '9
Sync

biue

data
psazs ‘
data
out
motor

D‘B
control \ouae 7 - 6
output 3 1
CASSETTE | - .
input outout
2
~ 3 - 1
clock data
ECONET . .
clock data
Bv Z

Anutogue Anutogue Gnd

CHI Gv CHI ©ov @v +By
| / /
I / /
Ne 70 60 50 L0 30 ,0 4O
ANALOGUE IN
50 'P-'.O 130 2o o Wpo 90
L \ \
LN N

CH VREF PBG CHZ2 VREF PBY LPSTB

240

Memory map

)

/’

37K normal
RAM

MOS
ROM
(16K)

8FEFF

- &F000

r &EOQO

+ 80000

Up to 16x16K pages of sideways ROM/RAM —
(4 pages RAM and 7 pages ROM fitted)

&LC000

- &B000

- &AD00

- 89000

HIME M —

moveable
bounddaries

<

LOMEM —=
TOP ——=

. — . e Em— . e e a e e —

A BASIC stack

[~

screen mernory

:

!

storage for
variables

users BASIC
program areqQ

&8000

- 87000

r 86000

- &5000

- 4000

- 83000

- 82000

F &1000

PAGE ~—=

used by MQOS

&0000

12K RAM
used by MOS

shadow
memory
(20K}

241

Replacing the internal battery

REFER TO THE HEALTH AND SAFETY INSTRUCTIONS AT THE FRONT
OF THIS GUIDE BEFORE ATTEMPTING TO REMOVE OR REPLACE THE
INTERNAL BATTERY.

The Lithium cell fitted in your computer is used to maintain the content of the
CMOS RAM at all times when the computer is disconnected from the mains

power supply.

Under normal operating conditions, the life of the cell can be expected to be well
In excess of one year, but annual replacement is recommended to ensure
absolute reliability. Replacement cells can be obtained from your supplier —
note that standard alkaline batteries are not suitable for this application.

Removing or replacing the battery will corrupt the current content of the
CMOS RAM and it 1s recommended that a copy of the settings is first written to
either tape or disc. This can be achieved in the following manner:

— Select the appropriate filing system and load a cassette or appropriately
formatted disc:
— Type:

MODED [return]
*SPOOL CONFIG [ReTurN]
*STATUS [return]

The computer will display (and store) a list of the current CMOS RAM settings.

Close the spool file by typing:

*SPOOL [return]

To replace the internal battery, proceed as follows:

— disconnect the computer from the mains supply;
— remove the computer’s top cover by unscrewing the four screws labelled FIX

(located on the computer’s underside);

— locate the battery nest (shown in the illustration below);

— remove the existing cell and replace it with the new cell, ensuring correct
polarity by reference to the + and - markings on the battery’s casing —
dispose of the old cell sensibly;

— replace the computer’s top cover;

The CMOS RAM may then be restored to its former state in the following
manner:

— connect the computer to the mains supply and execute a power-on reset, 1.e.
switch the computer on whilst holding down the R key. Keep the R key
depressed until the message:

2472

CMOS RAM reset
press BREAK to continue

appears on the screen.

Lithiunl cell

internal
speaker ~.__

= 'ﬁ““: . cartridge ROM

= " sockets

/

ENSURE CORRECT POLARITY

— press [Break] and manually reselect the filing system used to store file
CONFIG (as above):

For CFS : press | ctaL |+ T +[sreak]
For DFS : press | ctRL |+ D +| sreak]
For ADFS : press | craL |+ F +|BrEaK]

— select the BASIC language, select MODE 0 and then display the content of
file CONFIG, 1.e. type:

*BASIC |ReTurn]
MODED |Rreturn]
*PRINT CONFIG |[Return]

— use the information from the screen display as parameters to a sequence of
*CONFIGURE commands (see Appendix C). You will, of course, have to
reset the date and time using either TIME$ (as described on page 98) or the
Control Panel utility.

243

Index

accuracy 38

acoustic coupler 174

actual colour 93

ADFS 18,27,150,158,212

ADFS utihties 216

Advanced Disc Filing System 18,27,
150,158,212

Advanced Network Filing System 28

ADVENTURE 21

aerial lead 4

alpha-numeric keyboard 6,7

‘analogue in’ socket 178,240

AND 76

ANFS 28

AQUA 21

arc 231

array &84

arrow keys 6,9,110,131,168

ASC 61

ASCII character set 12,184

ASCII code 61,77,80,96,164

assembler 99 |

assembly language 99

AUTO 41

auto-boot 25

auto-entry 141

auto-repeat 6,14,131

auxiliary power output 17

b (bleep) 119

background colour 52,95,181
bar chart 149

BAS128 99

BASIC 13,34

BASIC keywords 218
BASIC program file 164
battery nest 242

battery replacement 242

244

baud 27

BBC BASIC 18,34
block 151

block operation 113,172
boot option 25

BREAK key 8

break key lock 9

C 180

CALL 100

Cambridge Lisp 180

caps lock indicator 7

cartridge ROM 150,152

Cassette Filing System 18,27,150,
151,206

cassette lead 3,15,239

cassette recorder 15

cassette socket 15,240

CASTLE 19

CEEFAX 11,94,178

centreing text 121

CFES 18,27,150,151,206

CHAIN 18

CHANGE 115

changing the range of colours 92

changing the time 26,98

channel number 87

character design 92

character sets 12,181,184

CHARDES 92,101

chip 153

CHR$ 62,95

circle 31,231

CLG 48

CLOUD 20

CLOWN 19

CLS 35

CMOS RAM 23,150,167,242

co-processor 28,175,179
co-processor options 28

COLOUR 55,92

colour monitor 176

colour number 93,181

command screen 106,131
concatenation 79

conditions 75

connector pin assignments 240
control key 8

control key depressions 15,190,227
control panel 23

control panel layout 24

copy cursor 40

COPY key 9,40,172

CP/M 180

CTRL 8§

cursor 9,107,131

cursor control keys 6,9,110,131,168
cursor editing 40,198

DATA 83

data file 86

database 32

date 26

day 26

DBASE 32

default language 26

DEFFN 69

DEFPROC 64

DELETE 42

DELETE key 8

descriptive mode 167

DFS 27,150,153,208

DIM 84

directory 156,161

directory catalogue 163

disc catalogue 155,158

Disc Filing System 27,150,153,208
disc type 25

disc unit 17,176

displaying a directory catalogue 163
displaying a disc catalogue 158
double height character 95

double spacing 27
double-sided disc unit 154
DRAW 65

Econet 150
conet socket 240
EDIT 165

EDIT screen 166
editing line 132
Editor 164

Elite 46

ellipse 31,231
ELSE 74

END 64

End Of File 88
end of file marker 164
ENDPROC 64
ENVELOPE 102
ENVELOPE 97
EOF 88

ERL 78

error handling 78
error message 78
ESCAPE key 8

external connections 175

field 56

file 86,150

file server 28

filename 113,125,155,159
filing system 150

filing system command 206
flashing colours 95,181,198
flood fill 31,52 231

floppy disc 17,150,154

FN 69

font 29,101,199,200

footer 127

FOR..NEXT 70
foreground colour 52,181
formula 128,133,143
FORTRAN 77 180

fthell 116

function 68,148

function key 6.9,43
function key definition 14,43,203

GCOL 49,89,92
GET 61

global operation 117
global variable 67
graphics 10,47,89
graphics cursor 48
graphics mode 47
graphics window 58

hard break 8

header 127

hexadecimal 90,100,104, 152
hierarchical directory structure 159
high-resolution graphics 49

IEEE interface 179
I[F 144

[F.. THEN 74
immediate command 108
INKEY 61

INPUT 37,60
INPUT LINE 61
insert mode 168
INSTR 81

integer variable 38
internal battery 242

joystick 21,178
justification 108,111

KEYBOARD 20
keyboard 6
keyboard codes 190
keyboard insert 10
keyboard status 26
keyword 34,164,218
keyword mode 167

label 128,132
LEFTS$ 81
LEN 68,80

246

library 158,163
line feed 27,177

line number 35,41

LIST 35,72
LISTIF 42

LISTO 72

Lithium cell 242
LOAD 109,134,150
local variable 66
LOG 35

lookup table 149
loops 70

machine code 23,99
machine operating system 12
macro 126

margin stop 108

marker 114,123

Martyn Gilbert 112,120
memory map 241

menu 29,76

MID$ 81

minimum abbreviation 42
MODE 48,106,130

mode 25,47,103,167,181
mode characteristics 181
MODES 19

modem 174

monochrome monitor 176
MOS 12,13,192

motor control 16

mouse 179

MOVE 48.65

multiple choices 76

NAME 124

nested loops 71
network 28

NEW 36,100
number 128
numeric array 85
numeric keypad 6,9
numeric variable 60

OLD 36

ON ERROR 78
ON...PROC 77
OPENIN 88
OPENOUT 87
operating system commands 13,192
OR 76

Oracle 11,94,178
OSBYTE call 197
overtype mode 168
overtyping 110

page eject 1260
page length 125
palette 29
PANFEL 23
PANOS 180

parallel printer 177
parameter 66

parent directory 162
Pascal 180

pathname 161

pattern design 103
PATTERNS 20
peripherals 175

PFILL 90,103

PLOT 50,231

PLOT code 231

point 231

power indicator 7
power-on reset 242
Prestel Adapter 178
PRINT 34,125,147

print formatting 56
PRINT TAB 54

print window 147

printer 125,177

printer driver 125,126,147
printer driver generator 126,147
printer options 27,198
printer server 28

printing 53

printing from VIEW 125
printing from ViewSheet 147

printing text at graphics positions 59
printing text in colour 55

PROC 64

procedure 63

procedure call 64

program name 44

prompt 11,35

PROTECT 138

protection 138

RAM 150

READ 83,109
read-only memory 13
read/write head 154
real variable 38
recalculation 137
rectangle 231

Reference Manual 2
REM 42

RENUMBER 36,42
REPEAT.. UNTIL 72
replication 141

replication, absolute 143
replication, relative 143
REPORT 78

resident integer variable 39
RESTORE 83

RETURN key 8

RES 27,150,152,208

RGB 176

RGB socket 240

right justification 122
RIGHTS$ 81

RND 71

ROM 13

ROM Filing System 27,150,152,208
root directory 159

RS423 interface 27,174
RS423 socket 240

ruler 108,117

RUN 35

running the Welcome programs 18

SAVE 113,150

247

saving and loading programs 44
SCREEN 121

screen display 10

screen mode 10

screen window 148

scroll 173

scroll protect option 25
sector 154 231

segment 231

serial printer 177

shadow memory 200
shadow screen 10,20
SHAPES 19

sheet screen 131

SHIFT key 7

shift lock indicator 7
single-sided disc unit 154
slot 128,132

slot format 140

slot range 136,143

slot reference 136

soit break 8

SOUND 97

sound 97,102,202

sound channel 97

sound generator 97

sound option 28
spreadsheet 128

SQR 35,69

STEP 70

stored commands 121,125,235
stored command margin 121
STR$ 81

string 39,79

string array 85

string variable 39,60
STRINGS 81

structured programming 62
subordinate directory 159,162

TAB below words 169
TAB columnsof 8 169
TAB key 8

TAB stop 119

248

technical information 239
Telesoft Filing System 178
Teletext Adapter 178
Teletext character set 12,186,188
Teletext control code 11,94
Teletext graphics 96
Teletext mode 94
Terminal emulator 174
text coordinate 54

text file 164

text screen 107

text window 57

TEFS 178

TIME 26,73

time 26

TIME$ 98

TIMPAINT 29

token 164

tone and volume settings 16
track 154

Trackerball 179

triangle 231

Tube 179,180

tuning the television 5
TURTLE 20

twin double-sided disc unit 155
twin single-sided disc unit 154

UHF socket 4

user port 179

user ROM cartridge 153
user-defined character 12,90
Utility programs 101

VAL 82

value 133

variable 37
variable name 37,38
VDU 62,89,90,91
VDU code 227
VDU command 57
VDU driver 227

vertical screen alignment 24,201
VIEW 105

VIEW commands 233
View family 130
ViewSheet 129
ViewSheet commands 237

Welcome programs 15
Welcome utilities 22
wildcard 127,208,212
Winchester disc 150,159,177
window 136,166

word processing 105

wrap around 25

write cursor 40

Z:80 second processor 180

IBOOT 25

208

$ 156,159

% 39
*9.13,35,133,208
*ADFS 158
*BACK 162
*BASIC 13
*CAT 158,163
*DIR 156,161
*DRIVE 155
*EDIT 165

*FX command 14,177,197
*KEY 14,43
*LIB 158,163
*MOTOR 16
*ROM 152
*ROMS 13
*RUN 23,153
*SHEET 13,130
*TAPE 151
*TERMINAL 174
*TIME 13
*WORD 13,106
+ 79

. 155,157,161
/9,335,133

128k BASIC 99

1MHz bus 177,178,179
32016 co-processor 180
32016 second processor 180
6502 second processor 179
65C102 co-processor 179

. 62

79,108

79

11,35,79,108

162

@% 39,57

Falt

162

AV I A

249

Acorn®

The choice of experience”

Acorn Computers Limited
Fulbourm Road

Cherry Hineon

Cambridge CBI 4]N
England

