
Quick installation guide

As an initial step we suggest stripping the BBC Micro down to a fairly basic configuration.
Any existing ROM expansion board will need to be removed. The picture below shows the
four 'sideways ROM' sockets with BASIC in one of them. The 28-pin chip on the left is the
operating system ROM and is not one of the sideways ROMs.

Ensure the machine powers up properly with BASIC's '>' prompt. It may be unwise to
proceed further with the installation until you have achieved this.

Operating System BASIC

If the computer fails to work then check the links carefully to the left of the User VIA (40-
pin 6522 chip). These are often changed when expansion boards are installed, hence when
any such board is removed the links must be put back in their default position. See next
page.

There is a strong argument for removing the main board from the case when installing the
upgrade board. Three wires are used to pick up signals for the RAM/ROM board and the
neatest approach is to solder them onto the bottom of the main PCB. Red spring loaded
probes can be used for those who would prefer not to solder directly to the main board.

Default link settings: Links S22 and S20 are both in the North position and
the two links that make up S21 both run East-West

The upgrade needs to pick up a minimum of three signals from the motherboard. Lengths of
green, white and yellow wire are used for this. At the ROM/RAM board end you can either
solder the wires to the pins directly, or solder them to the 3-way female housing as shown
below. Some heat shrink will tidy and reinforce the joints.

Remove the BASIC ROM. The ROM/RAM board has a number of pins on the underside
which go into the sockets on the motherboard. The picture shows roughly how the RAM/
ROM board fits, but note also the picture on the next page. Notice that pin 1 on the leftmost
socket does not get used whereas the rightmost row of pins on the rightmost socket has all 14
pins occupied. It is difficult to see what is happening to the pins in the middle but in practice
if the leftmost row of 13 pins is correctly aligned, likewise the row of 14 pins on the extreme
right, all will be well and the upgrade will push home very easily.

Left: Close up of the white, green
and yellow wires. Also shown is the
red and black pair used for the
battery backup system. Note that the
connector for the battery is not
polarized so take care get everything
the right way around. There are +
and - signs on the RAM/ROM board.
A diode and resistor on the upgrade
board means that no harm will occur
if the polarity is wrong - it just won’t
work properly.

The picture below shows exactly which parts of the four sockets are used by the ROM/RAM
board. The parts of the sockets enclosed by an orange rectangle should have pins on the
ROM/RAM board inserted into them. Study the bottom of the upgrade closely and you will
see how the actual upgrade itself relates to the picture below. Specifically, there are two
rows of 13 pins, one row of 14 pins and four groups of 3 pins. You will notice that pin 1 on
the leftmost socket is not used.

The rationale behind this was simple maths. Pin 1 on the motherboard sockets are not used
and the rows of pins come in lengths of 40. By using two rows of 13 and one of 14, wastage
was kept to a minimum (13x2+14=40)

The pins are more than strong enough in a vertical sense. They are, however, very
unforgiving about being bent sideways. As with ordinary DIL chips, typically this happens
when a board is levered out of position, with one end suddenly springing free and the other
still firmly in place.

The green, white and yellow wires need to be connected as follows;

White to pin 4 of IC77 (or pin 10 of IC33, use either)
Green to pin 12 of IC76
Yellow to pin 11 of IC76

In the picture below, the three wires are twisted together for neatness with some short pieces
of black heat shrink added every few inches to help prevent them untwisting. Route them
round to the underside of the motherboard and solder them directly to the bottom of the
relevant ICs. The red/black wires go to the optional battery pack for the eight banks of
sideways RAM.

The wires can be soldered on the top of the motherboard although it is arguably less neat
when done this way.

IC76 is by the keyboard ribbon cable connector.

Below: location of IC33 and IC77

Pin 10 IC33

Pin 4 IC77

Pin 12

Pin 11

The green, white and yellow wires need to be attached to the pins of some ICs on the BBC
Micro’s main board. If you prefer to avoid soldering to the ICs then you can attach a probe
to each of the three wires and make the connection that way. The probe can be pulled apart
and the wire soldered in place. Wrap the wire around a couple of turns as shown below to act
as a strain relief on the soldered joint, and remember to thread the cap onto the wire first.
Finally, push the two halves together again.

Personal preference is to solder the three wires rather than use the clips. Perhaps the best
approach is to use the clip initially just to make sure that everything works. Finally, take the
plunge and solder the wires directly to the ICs on the motherboard.

It is recommended that a toggle switch is fitted over both the links marked TI and TWP. Use
the same style 2-way female housing as for the battery connection. The length of wire
needed will obviously depend on where you intend to mount the switch.

TI means Total Inhibit and when open will prevent the RAM chip being read from or written
to. TWP is Total Write Protect and prevents the RAM chip being written to but permits
reading (providing TI is closed).

The 128kB RAM chip appears to the BBC Micro as eight separate banks of 16kB sideways
RAM in socket numbers 0, 1, 4, 5, 8, 9, 12 and 13. The RAM chip is the 32-pin surface
mount device immediately 'South' of the GAL16V8.

In the picture below an ordinary 16kB EPROM has been installed in SKT_B with filing
system code on it. This should be your normal 'mass storage' ROM and could be for ordinary
DFS, MMC, Compact Flash, etc. Notice that the two links LK5 and LK6 have been
removed. The toggle switch is fitted to the link marked TI and is shown in the closed
position.

With the main board back in the case it should be possible to power up the computer. Expect
to see the normal BASIC '>' prompt because BASIC has been preprogrammed into one of
the four banks available in the Winbond W29C020 chip (specifically, number 14).

The program needed for programming data onto the W29C020 is also stored on the
W29C020 itself in ROM filing system format. To access it, type

*ROM
LOAD "FLASH"
RUN

Just as an experiment, try the 'E' (Erase) option. The program should disallow it because you
would be trying to erase the BASIC interpreter from the flash ROM (W29C020) which is, of
course, currently in use. Erasing it would crash the machine. Press Escape to exit.

It is suggested that you make a copy of all the programs on the ROM filing system. To do
this, use

*ROM
*CAT

to perform a catalogue and see the names of the files. Then use

*ROM
LOAD "filename"
*DISC (or whatever filing system you are using)
SAVE "filename"

Repeat as required. This simply copies the files to your normal storage medium. Although
the FLASH program is stored on the W29C020 you may not wish to keep it there because it
is taking up a ROM socket. Hence the need to copy it to another location.

If you get a ‘Bad program’ message after trying to LOAD a program, it is does not indicate a
fault. It is more likely that the file being loaded is not a valid BASIC program.

By typing *OPT 1,2 before cataloguing the ROM filing system, more information is printed
out in response to *CAT. The last three columns of numbers are important because they are
the length and also the load and execution addresses of the file. Load and execution
addresses may be the same but this is not always the case. To copy a non-BASIC program to
your normal filing system (we will assume DFS in this example), follow these steps. The file
RFS will be used as an example.

RFS shows up in the catalogue as;

RFS 0BE6 FFFF1A00 FFFF2182

Here, &BE6 is the length of the file and &FFFF1A00 is the load address. &FFFF2182 is the
execution address. The &FFFF prefix relate to the way addresses in the second processor
were distinguished from those in the I/O processor and can be ignored for our purposes.

To copy the RFS file, we will use *LOAD to forcibly load the file to a particular address in
memory, then *SAVE to save it as a block of memory to the required filing system.

*ROM
*LOAD RFS 2000
*DISC
*SAVE RFS 2000 + BE6 2182 1A00

Remember, you only need to go through this slightly more complex procedure if the file is
not a BASIC program. In fact, though, the above approach involving *SAVE and *LOAD
will work for BASIC programs too.

If you don’t supply the load and execution addresses after the *SAVE command then they
take on default values. If these are incorrect then it will not be possible to *RUN a machine
code program. The Advanced Disk Toolkit (ADT) provides commands that allow you to
alter file parameters. ADT200 is the name of the ROM image and needs to be run as a
sideways ROM. This is not quite the same as the ROM filing system.

The W29C020 can hold up to four ROM images and they appear to the BBC Micro as ROM
numbers 2, 6, 10 and 14. You do not have to keep BASIC in the flash ROM although you
may wish to do so. However, in order to overwrite it you will need to make a copy of BASIC
somewhere else, one of the eight banks of sideways RAM being a good choice. You can use
B-Utility's RCOPY (ROM Copy) command to do this

*RCOPY E 0

copies the contents of ROM number 14 (part of the W29C020) to number 0 (in sideways
RAM). The RCOPY command always expects hex digits (&E is 14 decimal) and B-Utility is
also in the W29C020 as ROM number 10. A Ctrl-Break followed by *FX142,0 will then
ensure you are running BASIC in socket 0. You could now, if you wished, select the Erase
option.

The situation to avoid, if possible, is one where the W29C020 is completely erased and
the sideways RAM contents are also lost or corrupted. It's not impossible to recover
from this but it means fiddling about inside the machine inserting and removing ROMs
because as a minimum you will need to reinstall the original BASIC ROM.

Load address
Execution address
Length

Using the FLASH program is very easy. Use the 'S' option to decide which ROM socket you
wish to program. The possible choices are 2, 6, 10 and 14. However, the program will not
allow you to overwrite BASIC if BASIC is stored in the W29C020 and is currently in use.
The W29C020 as supplied does indeed contain BASIC in socket 14, so 14 will not be a
legitimate choice until you have moved BASIC elsewhere.

Also, B-Utility is quite a handy toolkit ROM (in socket 10) so before you overwrite it, use
the SAVEROM program to store it on disk, perhaps to use later in sideways RAM.

The FLASH program is stored on the ROM filing system format in socket 6. Again, make
sure you have saved it safely before deleting it from the W29C020. FLASH is on the CD in
SSD format and also as a text listing. But it is over 300 lines long so you will not wish to
type it in just for the fun of it.

Use option L to load your chosen ROM image into memory. Some simple checking is
carried out to make sure it is a valid ROM image (and a warning given if it appears not to be
valid) but it is largely up to you to supply sensible data.

The 'P' option actually programs the W29C020. You will be warned if you are about to
overwrite your current filing system. Think carefully before agreeing to this. It may be wise
to ensure that you have a copy of the filing system in one of the banks of sideways RAM. It
needs a full YES response in uppercase letters to proceed. Programming, including a verify,
takes around a second.

'E' will erase the entire W29C020 and again requires a YES to proceed. You are also warned
if the current filing system is about to be deleted. Erasure will not be permitted if BASIC is
currently stored in the W29C020 and in use. Note that you do not need to erase the chip
before reprogramming it.

'X' exits the program. Answering Y to the prompt about performing a reset will perform a
fairly effective simulated power-on reset without actually turning the machine off and on.
This may be useful to allow the machine to recognize the new ROM images and permit them
to claim workspace if required.

The FLASHER program is the one that is used to program all four banks of the W29C020 in
quick succession. It’s based on the FLASH program described above, but the menu and most
of the prompts have been taken out in order to speed things up. The ROM images to be
loaded, together with the socket number that they should be programmed into, are simply
included in a DATA statement right at the end of the program. Modifying it to suit your own
machine should be simple enough.

Battery backup for sideways RAM

Keeping the sideways RAM's contents when the machine is turned off requires the
connection of a battery pack. Various possibilities exist, for example two alkaline AAA cells
connected in series in a suitable dual holder. Three AAAs also work well. It is even possible
to use a 3.6V rechargeable cell.

Perhaps the best option is a lithium thionyl chloride (LTC) cell, something that is
specifically designed for long term low current drain applications. The Cypress 128kB RAM
chip draws about 2 microamps in standby mode and the expected life of an LTC cell should
be at least five years and probably much longer. Despite its initial higher cost, it should
require absolutely no attention whatsoever for many years.

Do not use an ordinary AA alkaline cell in the single AA holder supplied. The nominal
voltage of 1.5V is not sufficient to maintain the contents of the 128kB static RAM chip. The
LTC battery is usually about 3.6V.

[If you wish to use a rechargeable 3.6V NiMH cell then it will be necessary to short out LK7
on the upgrade board. This will allow the cell to receive a small trickle charge of around
2.5mA when the computer is turned on. On no account fit a battery which is not designed
to be recharged when LK7 is shorted. The LTC cell, with LK7 in its default open state, is
the recommended route at a cost which should work out at less than 1p per week]

You will need to solder a length of black and red wire to the AA holder, the black going to
the end with the spring fitted (-ve). The polarity is in fact marked on the holder itself, and
use heat shrink over both connections. The end which attaches to the RAM/ROM board can
have a 2-way female connector attached. See previous photos. The red wire must go to the
terminal marked '+' on the board.

There are various places in which the LTC cell can be located and three possibilities are
illustrated. When using the method below, it is imperative that you take steps to ensure
that the end of the battery cannot short out against the metal case of the power supply.

These pictures show other possible locations for the AA cell holder. It can be held in place
by double sided adhesive tape or perhaps a spot of silicone rubber sealant. The only
disadvantage with attaching it to the keyboard is that if you want to remove the keyboard for
any reason, you will most likely need to disconnect the backup battery and the RAM's
contents will then be lost. That said, reloading the data, particularly from a modern solid
state drive, is matter of a few seconds and really should not be a problem.

A perfectly satisfactory battery backup system can be made using the twin AAA holder. A
couple of AAA alkaline cells are included in the kit. A twin AAA battery system such as this
has been in use for over two years and in that time the voltage has only dropped from an
initial 3.2V to 3.1V. Clearly, it is a very cost effective solution.

As with the lithium thionyl chloride battery, simply solder black and red wires to the battery
holder with a 2-way female connector at the other end (to push onto the RAM /ROM board).
The AAA holder can be located as shown with a piece of foam to prevent it moving about.

- +

Writing to the sideways RAM

The RAM/ROM board provides eight banks of 16kB sideways RAM in sockets 0, 1, 4, 5, 8,
9, 12 and 13. The LOADROM program provided will load any named file from the current
filing system and write it into any chosen bank of sideways RAM. Some ROMs may provide
commands such as *SRLOAD to load data into specific banks of sideways RAM. It is
possible to load ROM images from cassette tapes but it is very slow and tedious.

Another program is called LOADER. This is a machine code program and the source
assembly language used to create it is called LOADSRC. The general idea behind LOADER
is that you set BASIC's resident integer variable S% to the number of the socket into which
the data is to be written, load the LOADER code at some suitable address, then CALL it.
&4000 bytes of memory, starting at address &3000, will then be written to the socket
indicated by S%. Hence addresses &3000 to &6FFF inclusive are written to the sideways
ROM space. The BBC Micro will obviously need to be in MODE 7 for this to work.

LOADER is quite short, only around 50 bytes. An example of how to use it might be;

10 MODE 7
20 *LOADER LOADER 2F00 (the machine code program)
30 *LOAD ROMDATA 3000 (the ROM data to be loaded)
40 S%=4 : REM The ROM socket to be written to
50 CALL &2F00 : REM Write the data to socket 4

The CALL address in line 50 must be the address of the LOADER code. Here it was loaded
at &2F00 but the code is in fact relocatable at any address within reason. The following
would have worked just as well;

*LOAD LOADER &2E80
CALL &2E80

It would be trivial to implement some kind of FOR-NEXT loop to read filenames and socket
numbers from DATA statements, load the images in turn and write them into sideways RAM
as part of a !BOOT sequence. In fact, loading all eight banks of sideways RAM in this way
can be done in around 5 seconds with a suitable filing system (around 0.6s per socket).

If you have the MMC storage system then another technique might be to use something like
this;

*DBOOT SETUP

This will select the named ‘disk’ and act upon the !BOOT file.

Whatever the method used, it will of course necessary to ensure that the TI and TWP links
on the upgrade are both closed, otherwise writing to the RAM is impossible. Another link
next to R1 should also be closed.

After loading an image into sideways RAM you will normally need to perform a Ctrl-Break
to allow the machine to recognize it. *HELP will show a list of the ROMS in the machine.
Certain types of 'toolkit' ROMs will also show exactly which socket numbers are occupied.

There is an SSD image on the CD called RSU1.ssd (ROM Set Up 1). If you have the MMC
system it is possible to copy this image from the CD to the multimedia card itself. Entering

*DBOOT RSU1

will then select the named disk, *EXEC the !BOOT file and load some example ROM
images into the sideways RAM. It should be clear how the program can be modified to load
any images that are required. You can also have several different disks, each one setting up
the machine in different way. Eg

*DBOOT RSU2
*DBOOT RSU3
*DBOOT 420

Another program is RLOAD. This is a machine code program and requires the format;

*/RLOAD <filename> <socket number in hex> (Q)

This loads the named file into the specified socket number. The use of the ‘Q’ option will
speed up the process at the expense of corrupting main memory (by using it as a buffer). An
example of the syntax would be;

*/RLOAD EDITOR C Q

to load the ROM image EDITOR into sideways RAM in socket 12 (&C),

Recovering from a ROM image in sideways RAM that causes the
computer to hang

There are two main approaches. One is to turn off the computer and briefly remove the
battery backup system. You can then turn the computer back on and all should be well.

Another method is remove the link marked TI (Total Inhibit) then perform a Ctrl-Break. The
RAM cannot then be read and any data that it contains is ignored. Then replace the TI link
(or close the switch, if fitted) and simply load a new ROM image over the offending one.

The use of a toggle switch over the TI pins is the recommended approach because it is best
to ensure that TI is open whenever the computer is turned on or off. Clearly, this is much
more convenient to do by means of a switch rather than an internal link.

ROM images that write to themselves

This technique was used extensively back in the BBC Micro’s heyday in order to discourage
software, normally supplied on EPROM, from being distributed on floppy disk and loaded
into sideways RAM. Essentially the code would be writing to a suitable part of the sideways
ROM address space (&8000 to &BFFF) to see if the data at that address could be altered. If
so, the assumption was made that the program was running in sideways RAM instead of an
EPROM. It then refused to work properly and perhaps attempted to disable itself.

Of course, this protection mechanism is easily defeated by write protecting the sideways
RAM. Whatever the copyright issues might be, it is also a fact that many of the ROM images
now available on the internet have been modified in order to remove the relevant piece of
code. Such images can generally be used in sideways RAM without difficulty.

The W29C020 flash ROM is not changed by casual writes to particular addresses. Every
write operation, if it is to be successful, must be preceded by the special command sequence
specified in the datasheet. In this respect it is immune to the ‘self write’ system used by
some ROMs. However, a write to any address of the flash ROM can disrupt several of the
subsequent read cycles if those read cycles are from the W29C020 itself.

You can see this for yourself by typing the following. (This assumes that BASIC is running
from the W29C020. To find out, type PRINT ?&F4 If the result is 2, 6, 10 or 14 then
BASIC is indeed in the flash ROM)

?&9000=0

You will probably get a spurious error here. The reason is that the CPU has attempted a
write to address &9000 and that will be a write to the W29C020. The next opcode fetch will
be from the W29C020 itself (because that’s where the BASIC interpreter is located) but the
previous write to &9000, although it doesn’t change the data, confuses the flash memory’s
internal state machine. The effect is that the next read produces invalid data (ie instruction
code). This is not a fault of the W29C020 or any other flash ROM. The inbuilt protection
against undesired Write operations is mainly to prevent corruption during transient power up
and power down situations whilst allowing the code to be legitimately changed if needed (eg
in BIOS chips). It is not designed to thwart self-modifying code.

In practice, what this means is that self-writing ROM images can cause an issue in the flash
ROM but for slightly different reasons compared to sideways RAM. Fortunately it is not
likely to be a problem because either the ROM image never used any kind of self-write
protection in the first place (BASIC, filing system ROMs etc) or, as previously mentioned,
the code has been hacked to remove the protection. The point is made again that the flash
ROM data will not get altered by self-writing code but it can affect subsequent read
operations from that ROM for a few tens of microseconds afterwards.

The Partial Write Protection (PWP) link by R1 will, when open, write protect banks 8, 9, 12
and 13 of the eight RAM banks. However, it will also write protect the flash ROM by
holding the Write Enable pin high. This overcomes the problem described above because no
Write to the flash ROM can take place. Additionally it write protects a 32kB static RAM (if
fitted) in SKT_B. It would be possible to fit a toggle switch over the PWP link but in
practice this should not be required.

The best arrangement of ROMs

There isn't really a 'one size fits all' answer to this. Although the BBC Micro can support up
to 16 ROMs in the machine, it is perhaps unlikely that in any one computing session every
single one of them would be needed. Additionally, dozens of different ROMs are available
and everyone's requirements will differ. The ideal arrangement of ROMs may well depend
on whether you have access to an EPROM programmer. Remember that the W29C020 is
best for storing ROM images that are important and don’t need to be changed very often. In
contrast sideways RAM is ideal for an E00 DFS, printer buffer and so on.

If you are able to program a 27512 (64kB) EPROM, then perhaps a good choice would be
BASIC, your main filing system, some kind of BASIC toolkit and maybe the BASIC Editor.
These four ROMs, now in a single chip, could go in the rightmost socket (SKT_B) as ROM
numbers 3, 7, 11 and 15. This would leave the both the flash W29C020 (sockets 2, 6, 10 and
14) and the 128kB RAM chip (sockets 0,1, 4, 5, 8, 9, 12, 13) available for any other purpose.
That is effectively 12 free sockets.

You could probably get away without battery backup on the RAM, as the W29C020 can be
programmed in situ and of course doesn't need a battery to retain data.

The best point about the above setup is that you can never find yourself with no language
ROM and no filing system, because those are both safely stored on the EPROM.

If you cannot program your own EPROMs then one option might be to put the original
BASIC in the rightmost socket (SKT_B) and your main filing system in the W29C020. This
would leave three free spaces in the W29C020 and all eight banks of sideways RAM are
available. Even if the sideways RAM gets lost or corrupted, BASIC is still present and the
filing system data should be safely stored in the flash ROM. The W29C020 is virtually
completely immune from accidental writes or corruption. The FLASH program supplied will
warn you if you are about to delete your current filing system, so inadvertently erasing it
should not be an issue. If you delete the filing system ROM then of course you could just
load it back into sideways RAM from disk, MMC or Compact Flash. But you need a filing
system ROM in the machine in order to do this...

Losing your filing system ROM is a nuisance but not disastrous. As outlined elsewhere the
steps to recover from this are fairly easy. One option might be;

1) Put BASIC in SKT_B, setting LK5 and LK6 as required. Use a program like

COPYBAS to copy BASIC into sideways RAM which must have battery backup
fitted.

2) Turn off the machine and change BASIC for your normal filing system ROM (DFS,
MMC etc). You are now in a position where you have both BASIC and your filing
system available, the former in sideways RAM and the latter as an ordinary ROM. It is
now possible to use the FLASH program to program the W29C020 as needed.

ROM clashes

With such a large number of ROMs written for the BBC Micro it was almost inevitable that
some ROMs might interfere with the operation of others. For example, two different ROMs
might both try to respond to a command like *SLOAD, with usually the highest numbered
ROM getting priority.

Sometimes the clash might be that two or more ROMs were unofficially trying to use a few
bytes of memory for their own special purposes (some kind of flag perhaps), but each using
it in a different way.

A more modern example is that of the MMC system which needs to access the User Port
through the User 6522 VIA. There is another project developed largely by Martin B called
UPURS which allows transfer of SSD images from a PC to BBC Micro, but also through the
User Port. UPURS has its own code in ROM and it will come as no surprise that the Turbo
MMC ROM and UPURS cannot be used simultaneously.

Fortunately there is usually no need to physically remove ROMs. Various 'Manager' ROMs
can accomplish the same thing through software tricks. B-Utility itself has two commands,
*ON and *OFF which can be followed by a list of ROM numbers (in decimal) which you
wish to temporarily disable. For example;

*OFF 3 5 10

disables the given socket numbers, even after Ctrl-Break. Use the *ON command to reverse
the process.

Other 'ROM Managers' include the Advanced ROM Manager.

A simple way to disable ROM number <n> is to enter from BASIC;

?(&2A1+n)=0

However, Ctrl-Break will usually reset the memory location back to its correct value so this
technique is not effective in all situations. Also, writing zero to the &2A1 table does not
prevent vectored entry into sideways ROMs, a topic which is covered in the Advanced User
Guide.

Programming a Winbond W29C020 Flash ROM

There are basically two ways to program this device, either externally with a stand alone
programmer or installed in the ROM/RAM board. Either way, the chip can contain up to
four ROM images as far as the BBC Micro is concerned.

With the chip in a separate programmer (usually attached to a PC), you will need to have the
ROM image data to program into the device. The W29C020 is a 256 kilobyte chip but when
used in the BBC Micro only the first 64kB are relevant. In other words, only addresses
&0000 to &FFFF on the device will be recognised. All remaining addresses (&10000 to
&3FFFF) are not used.

A ROM image must always start on address zero or an address that is a multiple of &4000.
Hence images must begin at &0000, &4000, &8000 or &C000. Remember that we are
talking about the address within the device as if it had no connection with the BBC Micro.
All four ROM images, when installed in the Beeb, will appear within the address range
&8000 to &BFFF but will have a different ‘sideways ROM’ number. The HxD hex editor
may be useful in joining together multiple ROM images into a single block ready for
programming. The connection between the device addresses and the ROM number as seen
by the Beeb is as follows;

Addresses range ROM number
&0000-&3FFF 2
&4000-&7FFF 6
&8000-&BFFF 10
&C000-&FFFF 14

Programming a W29C020 in the ROM/RAM board

Part of the reason for using the W29C020 is that it can be programmed in circuit using only
the existing 5V supply. A simple BASIC program is available to perform this programming,
but you need to bear the following in mind.

It will obviously be necessary to have a copy of the BASIC interpreter present in the
machine. Additionally, you must consider how you will load ROM images from the storage
system into the computer. It is clear that you normally need a minimum of two ROM images
available at the same time, BASIC and your usual filing system ROM (eg DFS, ADFS,
MMC etc). If we assume, worst case, that the eight banks of sideways RAM are all empty
and that the W29C020 is also empty, you only have the socket on the extreme right of the
expansion board (SKT_B) to accommodate two ROM images (BASIC and filing system). Of
course, if you have BASIC and the filing system programmed into a single 32kB EPROM
then you’re ready to go (although LK5 and LK6 will need to be set for a 27256 chip). But
here we will assume that BASIC and your filing system ROM are on two separate 16kB
chips, the eight banks of sideways RAM are all empty and the W29C020 is completely
blank. With care this situation need never arise, but if it does then the following is one way
to get back to normal.

Step one is to set up the expansion board as shown below. BASIC is in the rightmost socket
and the DFS (or appropriate filing system) in the other. Links are arranged to suit 16kB
ROMs. For reasons that will become evident, you will need to have a battery backup system
fitted to the sideways RAM. The eight banks of sideways RAM are in sockets 0, 1, 4, 5, 8, 9,
12 and 13. Note that when 28 pin chips are used in SKT_A the 4 unused pins are
towards the rear of the machine. Also, LK4 is set East.

Switch the machine on and it should power up in BASIC. You now need to use the
SAVEROM program to save copies of the BASIC ROM and also the filing system ROM to
your normal storage system. A modern solid state storage system will be quicker and more
convenient than a floppy drive but both methods are entirely acceptable. SAVEROM will
ask you for the ROM number that you wish to save, and with the arrangement as shown
below BASIC is in socket 15 and the DFS in socket 14.

You now need to run LOADROM in order to load copies of BASIC and the DFS back into
sideways RAM. LOADROM also asks for a ROM number into which data will be loaded,
and the valid options are 0, 1, 4, 5, 8, 9, 12 or 13. You must choose a different number when
loading BASIC and the filing system code. Now remove the link marked TI (or open the
switch if fitted) and turn off the machine. Remove both the BASIC ROM and the DFS and
then install the W29C020. Set the links as shown on the next page. NB changing LK4.

[Technical notes. It would have been possible to have left BASIC in the rightmost socket
and only bothered to copy the DFS code into sideways RAM. The important thing is that
when the machine is turned back on with the W29C020, both BASIC and the filing system
code are present somewhere in the sideways ROM system. The reason for removing the TI
link when switching the machine on or off is to reduce the chances of corruption in the 128k
sideways RAM chip.]

The system should now look as above. Switch on and you will be confronted with a
‘Language?’ error. This is normal. With the TI link removed the machine cannot read the
contents of sideways RAM and this is where BASIC and the filing system code are now
located. Simply place the link back on the TI pins and do a Ctrl-Break. You should now be
back with the familiar BASIC prompt.

It is at this stage that the supplied BASIC program will be needed. It is a simple menu driven
arrangement that will allow data (ie a ROM image) to be loaded from the current filing
system and programmed into the flash ROM. The ROM must be a W29C020. It can contain
up to four separate ROM images as ROM numbers 2, 6, 10 and 14.

The required BASIC program is supplied as a text file on the CD so as a last resort it can be
typed in by hand. It is also on the CD in the form of an SSD (Single Sided Disk) image, so if
you have one of the modern solid state storage systems then getting it onto the Beeb is easy
enough.

A third method, providing the Winbond chip was obtained from IFEL, is that the required
program is stored on the W29C020 itself in the ROM filing system. If so, then it is suggested
that the program is copied to another storage medium. To do this type;

*ROM (Selects the ROM Filing System)
LOAD “FLASH” (Load the BASIC program)
*DISC (or use *ADFS, *CARD etc)
SAVE “FLASH” (Save a copy of the BASIC program)

Notice that LK4 is
to the left when
using the W29C020

When the 'FLASH' program is run, you get a straightforward menu of options. The first of
these is to set the ROM number that you wish to program and a default value is shown. This
is always either 2, 6, 10 or 14. This is because the W29C020 can store up to four ROM
images and they are seen by the BBC Micro as being ROM numbers 2, 6, 10 or 14.

[Technical note. There is nothing to stop you from programming a copy of BASIC into the
W29C020, likewise your usual filing system ROM. If you have already done this then the
program will either warn you about certain options, or indeed prevent them from being
selected. Suppose for example that you have already programmed ROM number 10 (within
the W29C020) with BASIC and that ROM number 10 (ie BASIC) is the current language. If
you tried to reprogram ROM number 10 with new data then the machine would crash
because the BASIC interpreter, currently in use, would suddenly disappear. For this reason
the program will disallow certain choices.

Note also that the program is geared towards programming a Winbond W29C020. It is in
fact possible to use software to identify the exact type of chip that is installed (ie both
manufacturer and device type). If the program fails to detect the presence of the W29C020
then you will receive an error to this effect. If you want to try programming another type of
device (eg AM29F010) then you will need to study the chip datasheet and modify the
program to suit.]

Option (S) allows you to set the ROM number to be programmed. As discussed above this
must be one of 2, 6, 10 or 14. This option doesn’t attempt to program the chip in any way, it
just selects the ROM number for the (P) option.

Option (L) allows you to load data into the computer’s memory ready for programming onto
the chip. The data in question would normally be a valid ROM image and some rudimentary
checks are carried out on the data that is loaded. The program also checks that the file to be
loaded does not exceed &4000 (16kB) in length.

Option (P) programs the data in the computer’s memory into the chosen bank (ROM
number) of the W29C020. If, by doing so, you will overwrite the current filing system then
you will receive a warning to this effect. The program will then select the tape filing system
before programming the new data onto the chip. The action requires confirmation and a full
YES must be entered in uppercase letters.

The programming only takes a few moments and is followed by a verify to ensure that
programming has been successful. A ‘Pass’ or ‘Fail’ message is self-explanatory.

Option (E). This attempts to erase the entire chip. As with the programming option this will
not be permitted if the BASIC interpreter is currently in the W29C020 and in use. It also
requires a full YES to confirm the action. Note that there is no need to erase the chip before
programming it so the Erase option is not really essential.

Option (*). This simply allows any ‘star’ command to be entered. It might be useful to
change filing systems (*DISC, *ADFS), to catalogue the current disk, change drives etc.

Option (X). Exit the program. You will be offered the choice of performing a fairly effective
system reset (almost equivalent to a power on reset), and this requires a ‘Y’ response to
proceed and any other key to merely quit the program normally.

Deleting BASIC from the W29C020

There is nothing to stop you from programming BASIC into the W29C020. If you have
already done this, however, when you run the BASIC program just described, you may find
that it is not possible to completely erase the chip and you cannot overwrite BASIC with
something else. Both actions could crash the machine.

The way to work around this, if needed, is to temporarily load two copies of BASIC at the
same time. To do this, save a copy of BASIC to your main filing system using the
SAVEROM program. Then load it into one of the banks of sideways RAM (numbered 0, 1,
4, 5, 8, 9, 12 or 13) using LOADROM. Type Ctrl-Break then enter;

*FX142,n

where n is the sideways RAM bank number that BASIC has just been loaded into. You can
check if the action has been successful by typing

PRINT ?&F4

The result should tie up with the value of <n>,

It will now be possible to load and run the FLASH program and alter the contents of any of
the ROM numbers 2, 6, 10 or 14. You can also select the option to erase the entire chip.

Erasing a single bank of the W29C020

There is no specific option to do this but remember that it is not necessary to erase a 16kB
bank before reprogramming it with new data. If you really wish to delete a ROM image from
the W29C020 then you can achieve the required result just by using the (L) option to load
almost anything (other than a valid ROM image) into the machine prior to programming it
onto the chip. This will effectively delete the existing ROM image. The reason this works is
that sideways ROMs on the BBC Micro have to follow a certain format near the start of the
code (ie from &8000 onwards). If this format is not observed exactly, then the machine will
not recognize it and will flag the socket as being empty.

The are various software tricks for disabling ROMs that seem to be causing problems. One is
to enter

?(&2A1+n)=0

where n is the number of the ROM that you wish to disable. Certain toolkit or utility ROMs
also provide commands for achieving the same thing, for example the Advanced ROM
Manager and also B-Utility. Pressing Ctrl-Break will normally attempt to restore the above
memory location to its correct value although ‘toolkit’ ROMs are usually a bit more robust
in keeping ROMs disabled after Ctrl-Break.

A few notes on the programming algorithm

Although the FLASH program is a combination of BASIC and assembly language, there is
always some satisfaction to be gained from getting things to run as quickly as possible. The
W29C020 datasheet is clear about the requirements for programming the chip. Essentially,
programming is done a block at a time, each block ('page') being 128 bytes long. Generally,
you will want to write all 128 bytes to each page because those that have not been defined
(in that same page) will be turned into &FF.

When the last byte of a page has been written and a time interval of approximately 200us has
elapsed with no further write to the chip, the W29C020 will then commence its internal
writing to the memory array. This writing process does not happen instantaneously and the
datasheet specifies a maximum time for this of 10ms. The W29C020 makes provision for a
software technique for determining when the internal writing is complete. This can be done
by reading the last byte that was written to the chip. While the chip is still busy with its
internal write cycle, reading the last byte will obtain the complement (inverse) of the correct
value on data bit D7.

Testing for this in assembly language is extremely easy. If the data byte that was last written
to the chip is in the X register and the address that it was written to is defined by (dest%),Y
then a suitable polling loop might be;

.busy
 TXA
 EOR (dest%),Y
 BMI busy

The question then arises whether we can get on with anything useful while we are waiting
for the loop to end. Although not strictly needed, the program shows the progress of the
programming process by printing out the current page that is being programmed into the
W29C020. There are 128 pages, because 128 lots of 128 bytes (the page size) is 16384
(&4000, the size of sideways ROM space). Immediately after the last byte of each page has
been written to the chip, the current page number (1 to 128) is printed out on the screen in a
particular place. It is the assembly language equivalent of;

PRINT TAB(20,19)RIGHT$("00"+STR$X%,3)

Only when this has been done does the program fall into the 'busy' loop shown above to
ensure that the internal write is complete. In this way, any overhead converting X to ASCII
digits and printing them out at the right place on the screen does not add significantly to the
total programming time.

The effect is that programming the complete bank of 16kB takes only a second or so. The
maximum time taken for the chip to program its internal array for each 128 byte page is
given as 10ms in the datasheet and this is unlikely to be too far out. So if we assume 10ms
per page and there are 128 pages to program, simple maths tells us that the total
programming time will be about 1.28 seconds at most. The programming time achieved by
the FLASH program is slightly less than this figure (even including a final verify) so there
seems little point in trying to achieve any further speed increase.

Programming another type of flash ROM

The Winbond W29C020 is entirely satisfactory for this ROM/RAM board and there should
not be any advantage in using another type of flash memory. That said, the Beeb is a good
platform for experimenting with both hardware and software and there is no reason why you
should not try programming another type of chip, for example an AM29F010, just for the
satisfaction of doing it. The procedure involves writing to the ROM select latch at &FE30
and this can only really be done from a machine code program. Therefore, a knowledge of
how to use BASIC's inbuilt assembler will be needed.

The key point to grasp is that the datasheet for the chip will refer to writing a certain byte of
data to a specific address in order to achieve a particular result. Sometimes several bytes
must be written to different addresses in a certain order. The datasheet authors cannot
possibly know what the target system for the chip will be, so the addresses that they refer to
will obviously have a tenuous connection with the BBC Micro. Using the W29C020 as an
example, to completely erase the device initially involves writing data &AA to address
&5555 on the chip. However, just writing;

LDA #&AA
STA &5555

in assembly language is not going to work. Address &5555 is right in the middle of user
memory and all the sideways ROMs (of which the flash memory is one) will be disabled.
Some ‘address translation’ will be needed although this turns out to be very straightforward.
Here are the key points to keep in mind (a separate section covers much of this more detail);

1) A16 and A17 on the flash chip (pins 2 and 30) are permanently grounded
2) A15 and A14 on the chip (pins 3 and 29) respectively come from the QD and QC

outputs of the ROMSEL 74LS163 latch on the motherboard (at address &FE30) and
NOT directly from the processor’s address bus.

3) A13 through to A0 come directly from the CPU address bus.
4) When writing to the chip, CPU address A15 must be high and A14 must be low.

In practice therefore, when the datasheet refers to writing to address &5555 you need to
achieve this in two stages. The first is to write a number to number to ROMSEL such that;

D0 on the data bus is 0
D1 on the data bus is 1
D2 on the data bus is whatever you want A14 on the W29C020 to be
D3 on the data bus is whatever you want A15 on the W29C020 to be
D4 to D7 should be zero

The reason for setting D1 and D0 to 10 (binary) is to ensure that the correct socket on the
motherboard (and by implication on the ROM/RAM upgrade) is activated.

In the FLASH program you will see how this has been done using a couple of BASIC
functions called FNlatch and FNaddress.

FNlatch takes the full address in the argument and shifts the binary equivalent right by 12
places (divide by 4096). This moves bit 15 down to bit 3 and bit 14 down to bit 2. The result

is then ANDed with &C (binary 1100) in order to force all the remaining bits to 0. Finally,
the result is ORed with 2 (binary 10). The result of this calculation is the eight bit immediate
constant for an LDA instruction, and this is then written to ROMSEL (at &FE30) in the
normal manner. That is to say, the same number is written to &F4 and then &FE30. Writing
to ROMSEL in this way not only makes sure that the correct socket on the main board is
active, but also sets A15 and A14 on the W29C020 to the correct logic state.

Another simple function is FNaddress. This takes the number given in the argument and
retains only bits 0 to 13 by ANDing it with &3FFF. Sideways ROMs can only be accessed
when A15 on the CPU is high and A14 is low, so the number is then ORed with &8000.

The assembler built into BBC BASIC is extremely flexible. The full power of the expression
evaluator is available and you can see how this has been used to advantage in the FLASH
program. As an example, when the datasheet specifies data byte &55 must be written to
address &2AAA, this has been implemented by;

LDA #FNlatch(&2AAA) \Extract bits for A15 and A14
 \and ensure D1 and D0 are 10
JSR romsel \Write to &F4 and &FE30. This sets
 \A15 and A14 on the chip correctly
LDA #&55 \Data byte needed
STA FNaddress(&2AAA) \Compute correct address and store
:
:
:
.romsel
STA &F4
STA &FE30
RTS

DEFFNlatch(a%)
=((a% DIV 4096) AND &C) OR 2

DEFFNaddr(add%)
=(add% AND &3FFF) OR &8000

Link settings summary

PWP. The Partial Write Protect link is by resistor R1 near the back of the upgrade board, on
the left. When open, four of the eight banks (8, 9, 12, 13) become write protected and the
remaining four can still be written to as normal. The 128K static RAM chip produces eight
banks of RAM in sockets 0, 1, 4, 5, 8, 9, 12 and 13. PWP also write protects the W29C020.

TWP. When open, the TWP link (Total Write Protect) causes all eight banks of sideways
RAM to be write protected. It overrides the setting of the PWP link (above). In other words,
when TWP is open the state of the PWP link makes no difference. The TWP link effectively
just acts as an open/close switch to either allow or prevent the Write signal getting through
from the programmable chip to the 128K static RAM.

TI (Total Inhibit) can be used to disable the 128K RAM chip completely. When open, it is
not possible to read from the 128K RAM chip and it cannot be written to either. One use is
to easily recover from a corrupted ROM image in the sideways RAM which is causing the
machine to crash. Simply open TI and do Ctrl-Break.

It is strongly recommended that an easily accessible switch is fitted over the TI pins so
that it can be in the open state whenever the machine is turned on or off. Past
experience indicates that this is a foolproof method of ensuring that no spurious Writes
get through to the RAM chip during power on or off.

LK1. When closed, QD from the motherboard 74LS163 latch is connected through to pin 1
on a 28-pin chip in SKT_A, or pin 3 on a 32-pin chip (eg W29C020). When open, the
onboard resistor R8 pulls this pin high.

LK3. When North, a Write Enable signal is routed through to pin 27 on a 28-pin chip (or pin
29 on a 32-pin chip). When South, QC from the motherboard 74LS163 latch is routed
through to these pins instead. Left open, the pin will be pulled high by R9.

Here is a quick summary of LK1, LK3 and LK4 settings which relate only to SKT_A

LK2 must be closed for SKT_A to work at all. If LK2 is open, the Chip Enable pin on 20 (28
pin device) or pin 22 (32-pin flash ROM) will be pulled high by R12. Removing this link
temporarily may be useful if code in the flash ROM crashes the machine.

When using the 32 pin W29C020 LK4 must be in the West (left) position to put a logic 0 on
pin 30. For any kind of 28-pin chip LK4 must be East to route the +5V supply to what is
then pin 28.

Device LK1 LK3 Number of ROMs ROM numbers

16kB (27128) Open Open 1 14

32kB (27256) Open South 2 10,14

64kB (27512) Closed South 4 2,6,10,14

32kB SRAM Closed North 2 6,14

W29C020 Flash Closed South 4 2,6,10,14

LK4

East

East

East

East

West

Device LK5 LK6 Number of ROMs ROM numbers

16kB (27128) Open Open 1 15

32kB (27256) Open South 2 11,15

64kB (27512) Closed South 4 3,7,11,15

32kB SRAM Closed North 2 7,15

LK5. When closed, QD from the motherboard 74LS163 latch is connected through to pin 1
on SKT_B. When open, the onboard resistor R11 pulls this pin high.

LK6. When North, a Write Enable signal is routed through to pin 27 on a 28-pin chip in
SKT_B. When South, QC from the motherboard 74LS163 latch is routed through to this pin
instead. Left open, the pin will be pulled high by R10.

LK7 shorts out the diode D1 which normally prevents the backup battery, if fitted, from
being charged. Only short out this link if you are using a rechargeable battery such as a
3.6V NiMH cell. Otherwise it must be left open. LK7 is in fact not fitted to make it less
likely that it will be made accidentally when the backup battery is not of the rechargeable
type.

This is a summary of the links for SKT_B

Notes:

When using a 28 pin chip in SKT_A, make sure the unused pins are at the back of the
machine. See this photo here.

When using a 32kB static RAM chip in either SKT_A or SKT_B it will not be battery
backed. Write protection for SKT_A and SKT_B can be achieved by respectively removing
LK3 and LK6 as shown on the previous page. With the 128kB surface mount RAM present
at all times, battery backed and easily write protectable with a switch, it is not envisaged that
using 32kB RAM chips in SKT_A or SKT_B will be especially useful.

Suitable 32kB RAM chips, should you require them, typically require a search of the
numbers 43256 or 62256 on eBay. Be sure to get the DIL or DIP package rather than any
kind of surface mount device such as SOIC or SOJ.

The above arrangement of switches has proved very convenient for the 128K RAM board.
The rearmost switch marked RD is connected across the TI (Total Inhibit) pins and the
switch is closed when moved forwards in the direction of the arrow. The RAM chip can then
be read from in the normal way. The other switch marked WR is the write protect switch,
and the RAM is write protected when the switch is to the rear (open) as in the picture above.
The RD switch is pushed rearwards whenever the computer is turned on or off and only
moved to the forward position if and when needed. A Ctrl-Break is usually required in this
type of situation, ie after moving the RD switch to the forward (closed) position.

Write protection is less useful than it was back in the 1980s because many of the ROM
images now available on the internet have been modified to remove the anti-sideways RAM
protection.

The BBC Micro’s sideways ROM system

Here we will take a look at how the BBC Micro’s paged ROM system works. Those with no
interest in electronics and/or assembly language will hopefully get an understanding of
what’s going on. Readers who are au fait with such material should be able to fathom the
system without difficulty. The Beeb’s paged ROM system is very flexible but not
particularly complex in hardware terms.

Examine the circuit diagram of any typical microcomputer system and various key features
will become apparent. The first is that the microprocessor is very much in command and can
talk to various different pieces of hardware through the system data bus. On the 6502, as
used in the BBC Micro, this data bus is 8 bits wide. The CPU (Central Processing Unit, the
6502 in this case), always reads and writes eight bits at a time. The individual data lines are
normally referred to as D0 through to D7, D0 being the least significant bit.

Examples of other pieces of hardware in the machine include the Operating System ROM,
the System 6522 VIA (Versatile Interface Adapter), User VIA (optional), floppy disk
controller (typically an Intel 8271 or perhaps a 1770 device), main memory and so on. All of
these will be connected to the system data bus, and the obvious question arises as to how the
processor can communicate with a specific device - the floppy disk controller chip for
example - and temporarily ignore all the others.

Most chips have some kind of ‘Enable’ signal associated with them. This Enable signal will
be generated by decoding circuitry on the main board, and the system is normally designed
in such a way that any particular device (for instance the User VIA), can be accessed if and
only if the CPU reads from or writes to a very specific address. Sometimes a chip can
contain several different special purposes registers, each being located at a different address.
Staying with the example of the User VIA in the BBC Micro, it contains 16 separate
registers and these are located in the memory map between addresses &FE60 and &FE6F
inclusive. When the CPU reads from or writes to those addresses, the Enable signal on the
User VIA is activated. The User VIA alone will respond, other devices will remain in a
disabled state because their individual Enable signals instruct them to remain inactive. The
BBC Micro uses the ‘&’ prefix to indicate that a number is hexadecimal. The CPU uses its
R/W signal to indicate whether it is trying to read from or write to other chips in the circuit.

The fact that the User VIA is located at addresses &FE60 to &FE6F is not an essential
requirement the 6502. The designers of the BBC Micro decided that the User VIA would be
located at those addresses and the address decoding circuitry was implemented accordingly.
A completely different machine might also use a 6522 VIA but locate it at addresses &EE80
to &EE8F. The 6502 does have a few addresses which are reserved for special purposes, but
other than that the system designers have a great deal of leeway in terms of what hardware
goes into the finished system and where.

It is essential that only one device should try to control the data bus at any one time. Chaos
would ensue if the floppy disk controller and one of the VIAs attempted to place data on the
data bus at the same time. That is why a major fault on the motherboard, such as solder
splash which permanently grounds one of the data lines, will stop the CPU in its tracks and
prevent the system from showing any signs of life.

With a little bit of scene-setting now over we are in a position to look at the Beeb’s sideways
ROMs in a bit more detail. The diagram below shows the relevant circuitry. The four
sideways ROMs are enclosed by a red rectangle, the ROM just outside it on the left is the
Operating System ROM. The Operating System ROM occupies addresses &C000 through to
&FFFF and is therefore 16kB in length (&4000 bytes). However, some addresses within that
range are devoted to specialist chips such as the VIA mentioned previously. Furthermore,
addresses &FC00 through to &FDFF are dedicated to the 1MHz bus, one of the areas of
memory mapped I/O (Input/Output). We need not concern ourselves with this here.

The first point to observe from the above is how the eight data lines on each ROM are seen
to be joined together. Hence D0 on one ROM is connected to D0 on all the others. Similarly
for D1 to D7 inclusive. Fouteen address lines from the CPU, A0 to A13, are likewise
connected to each of the address pins on the ROMs.

So far this is everything that we would expect. Four separate ROMs are connected to the
system data bus to feed information to the CPU when required. The key to this is the CS
(Chip Select) signal on pin 20. These are NOT all joined together. Each chip has its own
unique CS signal generated by 2-to-4 line decoder, IC20 (74LS139).

Working backwards from the ROMs, the active low CS pin (number 20 on the ROM) is
connected to one of the four decoder outputs (74LS139, IC20). This decoder has two inputs
designated A and B on pins 14 and 13 respectively. These inputs can of course be in one of
four possible states, 00, 01, 10 and 11. For each state of the A/B inputs just one of the
outputs can go low and the other three will remain at a logic high level. The outputs are
called 0, 1, 2 and 3 to tie in with the binary number on the inputs A and B. The actual pin
numbers are seen to be 12, 11, 10 and 9. There is a further input called G on pin 15 which
we will return to in a moment.

It is now necessary to see how the inputs to the decoder are controlled. Due to the links
marked S20 and S22 it is not immediately clear where the signals go, but in a standard
model B the A input on the LS139 comes from the QA output on IC76, the 74LS163. The B
input on the LS139 comes from the QB output on the LS163.

IC76, the 74LS163, is a four bit synchronous counter. It is not used in a counting mode here
and instead relies on the LD (Load) input to preset the counter with a known value. The LD
input has been labeled ROMSEL by Acorn and is a signal that is activated by the CPU
writing to address &FE30. The effect is that whenever a Write occurs to &FE30, the LS163
captures the least significant four bits of the data bus (D0 to D3), and stores them in the
latch. The stored values are then available on QA, QB, QC and QD where they remain until
a further write to &FE30.

So, as an example, the instructions;

LDA #2 \Binary 0000 0010
STA &FE30

will result in the number 2 being stored in the LS163. Specifically, QB will be logic high and
QA, QC and QD will all be logic low.

Recall that the CPU always deals with complete bytes on the data bus but it is clear that the
values of D4 to D7 when writing to ROMSEL are irrelevant. Only the least significant four
bits (nibble) are stored in the latch and the upper nibble is disregarded. The lower nibble will
have a value in the range 0 to 15. It is best to ensure that D4 to D7 are all zeroes when
writing to ROMSEL to ensure compatibility with later machines such as the Master.

When the required number (0 to 15) has been written to ROMSEL we now know that this
same number will appear on the outputs QA, QB, QC and QD of the LS163 latch. The QA
and QB outputs are fed into the And B inputs on the 2-to-4 line decoder, IC20. This in turn
drives one of the decoder outputs low as previously described. Or rather, it does when the G
input referred to earlier is also at the right logic level.

The sideways ROMS are all designed to appear in the computer’s memory map between the
addresses &8000 to &BFFF inclusive. If the CPU is accessing any other area of memory,
such as the operating system ROM or perhaps the machine stack in page 1 (&100 to &1FF),
it would be undesirable to activate any of the sideways ROMs. For this reason the G
(Global) input on the LS139 decoder is used.

The G input on pin 15 of IC20 is used as a master control input. When it is logic high all
four decoder outputs will be off (high) also. The state of inputs A and B makes no
difference. It is only when the G input goes low that the output defined by A and B goes low
too.

G is required to go low when the CPU is accessing the sideways ROM space, &8000 to
&BFFF. In binary these addresses are;

1000 0000 0000 0000 (A15 on the left, A0 at the extreme right)
1011 1111 1111 1111

What we can see is that common to all the addresses in the given range is that A15 is high
and A14 is low. The decoding required to do this is very simple and can be seen in the
bottom right of the diagram on the previous page. Three dual input NAND gates are used.
The NAND output on pin 11 feeds the G input on the LS139 decoder, and will only go low
when A15 is high and A14 is low. The bottom NAND gate in the group of three acts as an
inverter because the second of its two inputs is tied high.

So we are nearly there. Whenever the CPU reads from or writes to an address in the range
&8000 to &BFFF, it will be accessing one of the sideways ROMs because the G input on
IC20 is low. The programmer must decide in advance which ROM is needed and this in turn
is achieved by writing the required number to ROMSEL at &FE30

There are three more points to make to complete the picture. One is that it is not possible (in
the Model B) to read from ROMSEL (eg LDA &FE30) and obtain meaningful information.
In other words, you will not read back the number that was written there. For this reason
there is always a copy of the value in ROMSEL in zero page location &F4. This copy does
not appear by magic and the onus is on the programmer to make sure that a copy is stored
there whenever you write to ROMSEL. For example;

LDA #3
STA &F4
STA &FE30
;
;
Notice the order of the STA instructions. Always write to &F4 first and then &FE30. The
reasons for this are to do with interrupts. There is no need to disable interrupts when
performing the above sequence. The code;

SEI
LDA #3
STA &F4
STA &FE30
CLI

will work but the SEI/CLI is not needed.

Very often as a programmer you will need to ascertain the number of the currently active
ROM so that it can be activated again before your code exits That is one of the reasons why
the copy in &F4 is important. Eg

LDA &F4 \Get the currently active ROM
PHA \Save it
LDA #4 \Activate ROM 4 (in this case)
STA &F4
STA &FE30
 \Your code here
PLA \Retrieve original ROM number
STA &F4 \Activate it in the normal way
STA &FE30
RTS \Exit

The second point is that the Beeb’s design was geared up to handle up to 16 sideways ROMs
numbered 0 to 15. In the basic Model B, the QC and QD outputs of the LS163 latch are not
connected to anything useful. Like the whole of the upper nibble, D2 and D3 become “don’t
care” states when writing to ROMSEL. The effect is that (again in an unexpanded model B),
exactly the same data will appear in four different sockets, the only difference being the
value on QC and QD.

Consider the following binary numbers

0010 (decimal 2)
0110 (decimal 6)
1010 (decimal 10)
1110 (decimal 14)

When written to ROMSEL in an unexpanded model B, they will all result in the same
physical sideways ROM being selected. This is because the lowest two bits, latched into QA
and QB on the LS163, are the same in all cases. When the computer is powered up or Ctrl-
Break performed, it scans all the sockets 15 to 0 (in that order) to work out which ones
appear to contain valid ROM images. As a rule the computer uses only the highest numbered
socket and disregards what it thinks are identical copies in lower numbered sockets. That is
why the socket numbers on a normal Beeb’s motherboard are numbered 12 to 15 (left to
right). The default language is the language with the highest ROM socket number. So for
example, with BASIC in socket 14 and Wordwise in socket 12, the machine will normally
power up with BASIC active. To use Wordwise it is necessary to type in the required
command, *WORDWISE in this case. Swap the two chips around, however, and the
machine will power up in Wordwise. It will now be necessary to enter *BASIC if that’s what
you wish to use. Needless to say, most users arrange their ROM numbers so that it powers
up in their language of choice.

The final hardware consideration is the OE (Output Enable) signal on pin 22 of the ROMs.
As far as the ROMs are concerned this is the last piece of the jigsaw. The implication up
until now has been that the ROMs place data on the data bus when the CS (or CE, Chip
Enable) signal goes low, but this is not entirely accurate. A low on CS changes the chip from
a low power standby mode to one where it consumes a bit more power but is ready to
respond very quickly. A low signal on OE as well will finally cause the chip to place data on
the system bus. A high level on OE places the data lines on that ROM in a high impedance
state - their loading on the bus is negligible. There are various reasons for this apparently
elaborate arrangement. Power consumption is one and another is to do with the access time -
the time taken for the chip to produce valid data after its address and control lines are stable.

10 DIM A 100
20 P%=A
30 [
40 LDA &F4
50 PHA
60 LDA #12
70 STA &F4
80 STA &FE30
90 STA &9000
100 PLA
110 STA &F4
120 STA &FE30
130 RTS:]
140 CALL A

This program was used to produce the
oscilloscope screen on the next page. It
generates a low pulse on the CS signal,
pin 20 of ROM socket 12. It is the STA
instruction in line 90 which causes the
low pulse on CS because it culminates in
the CPU writing to address &9000 in the
sideways ROM address range (&8000 to
&BFFF)

/PHI1 on CPU

OE on ROM
socket pin 22

CS on ROM
socket pin 20

Write strobe
on pin 8 IC77

Write signal
from CPU

This shows most of the relevant signals when a write operation occurs to one of the ROM
sockets. Starting from the top, the purple trace is the main PHI2 clock (actually obtained in
the Beeb by inverting PHI1 on pin 3) used by the processor. The two vertical cursors show a
complete clock cycle and is in fact the Write operation resulting from the STA &9000
instruction (see program on previous page). The cursors are seen to be 500ns apart and this is
to be expected from a 2MHz clock. It is the falling edge of PHI2 that is usually the critical
moment. During a Read, the CPU latches data from the data bus on the falling edge of PHI2.
At the completion of a Write, the data is guaranteed to be correct on the falling edge of PHI2
and it is up to the device being accessed to receive the data in a timely manner. The
receiving device, perhaps a VIA or disk controller chip, will normally have some kind of
“Write Strobe” or “Write Enable” input pin to accomplish this.

The blue Output Enable signal is from pin 22 on the ROM socket. The OE signal is common
to all the ROMs and is generated on pin 6 of IC25, a 74LS20. This is a quad input NAND
gate and one of the inputs is the 2MHz clock. When any input to a NAND gate is low, the
gate’s output will be high and it can be seen above how OE goes high shortly after the
falling edge of PHI2. The slightly noticeable delay is the propagation delay in the NAND
gate.

It is odd that Acorn designed OE to be low during a Write cycle. For a few hundred
nanoseconds, there is contention on the data bus with the CPU trying to place a certain data
pattern on the data bus and the ROM trying to output another.

/PHI1 on CPU

OE on ROM
socket pin 22

CS on ROM
socket pin 20

Write strobe
on pin 8 IC77

Write signal
from CPU

The yellow signal is the low Chip Select pulse on pin 20 of the ROM under test. Each ROM,
remember, has its own unique Chip Select signal generated by 2-to-4 line decoder. We saw
how one of the outputs of the decoder can only go low when a suitable address appears on
the address bus. Specifically, A15 must be high and A14 must be low - when this happens a
group of three NAND gates creates a logic 0 (low) on the G enable input on the decoder. The
leftmost cursor is on the falling edge of PHI2 and marks the completion of a Read cycle by
the CPU. (As a point of detail, the CPU was reading the most significant byte of the absolute
address in the STA &9000 instruction. In other words, the data read was &90 but we cannot
tell (using the information given) from what address that data was read. We only know that it
was in user RAM, probably in page &19 somewhere).

Immediately after the falling edge of PHI2 marking the end of the Read cycle, the CPU
started its Write cycle in order to place the contents of the accumulator at address &9000. It
takes a while for the address lines to change and stabilise to the correct destination address,
and only when this happens will CS go low. That is why there is very conspicuous delay
between the falling edge of PHI2 and a change in CS.

The bottom white trace is the Read/Write signal from the CPU. A low indicates a Write
operation is taking place.

After the Write cycle shown above, a read operation will occur. It will be an opcode fetch
from the address immediately after the three-byte STA &9000 instruction.

Same diagram as the previous page for ease of reference.

/PHI1 on CPU

OE on ROM
socket pin 22

CS on ROM
socket pin 20

Write strobe
on pin 8 IC77

Write signal
from CPU

Same diagram as the previous page for ease of reference.

The fact is that the Write signal will go low before the data bus and address bus have both
settled to stable logic states. We know this is so because the above illustration shows that the
CPU Write (bottom trace) goes low well before the falling edge of CS, which in turn only
occurs when A15 and A14 are 1 and 0 respectively.

That is why you cannot use the R/W signal directly from the processor when trying to write
to a static RAM chip installed in one of the sideways ROM sockets. Random addresses will
be flashed with unknown data and cause havoc. The falling edge of the Write signal needs to
be delayed and the way this is normally done is to use the signal available on pin 8 of IC77
(green trace). Yet again an arrangement of NAND gates ensures that this Write Strobe signal
is only low when PHI2 is high and also the CPU Write signal is low (bottom white trace).
The moment PHI2 falls, the green Write Strobe signal rises a few nanoseconds later.

It is fortunate, when checking the data sheets for a 32kx8 static RAM, that the OE pin on the
chip is a “don’t care state” during a Write cycle. In other words it can be either high or low
and the write will still be successful. If it were necessary for the OE signal to be high during
a write to a static RAM then it would not be so easy to add a 32kB RAM chip to an ordinary
model B.

It is worth noting that a Read cycle from the sideways ROM space looks almost exactly like
the above diagram. The only difference is that, fairly obviously really, the green Write
Strobe remains high as does the Read/Write signal from the CPU (bottom trace).

Using the spare space in the W29C020 - method 1

The RAM/ROM board treats the W29C020 chip as being four banks of 16kB in sockets 2, 6,
10 and 14. This is a total of only 64kB, yet the Winbond 29C020 is a 256kB chip.

To achieve a capacity of 256kB the W29C020 has 18 address lines, A0 to A17. The two
most significant ones, A16 and A17, are permanently grounded on the expansion board. If,
however, we wished to access the chip's full capacity then normally we would want to be
able to control the logic level on these address pins. With each pin having two possible logic
states, the total number of combinations of A16 and A17 is four (00, 01, 10 and 11). Four
lots of 64kB is of course the full 256kB.

One possibility would be to implement a writable latch similar to the one at &FE30
(ROMSEL). Let us assume that such a latch was implemented at address &FF30, the idea
would be that a write to &FF30 would capture D0 and D1 from the data bus in, for example,
a device such as a 74HCT74 dual D-type latch. The outputs of the latch would then be
connected to A16 and A17 on the W29C020. It would be important to include the R/W
signal in the decoding so that a read operation from address &FF30 would be ignored and
that only a write would trigger the latch.

Just putting a bit more detail here, the requirement is to decode some of the address lines and
control signals from the CPU such that when a Write operation occurs to address &FF30 (for
this example), a positive going edge is generated which is fed to the clock input of the
HCT74 D-type latch. D0 and D1 from the system data bus are fed to the two D inputs of the
latch and the positive going edge generated by the decoding logic clocks the values on D0
and D1 onto the Q outputs of the latch. It is these Q outputs which would be fed to the A16
and A17 address pins of the W29C020. These Q outputs should only change when a Write
occurs to address &FF30. Of course, you might not wish to fully decode all the address lines
and this might mean that a Write to FF3x would trigger the latch. In other words, all
addresses between and including &FF30 and &FF3F have the same result. You would
probably want to put some kind of RC network on the RST input of the latch so that the
machine power up in a known state, that is with the two Q outputs set to zero.

Effectively, this approach provides a software means of paging in the previously unused
areas of the W29C020. For instance

?&FF30=0 (or LDA #0:STA &FF30)

would set A16 and A17 to zero (which they normally are), and

?&FF30=2 (LDA #2:STA &FF30)

would set A16 to zero and A17 to one. Every time the state of A16 and A17 is altered, a new
block of four ROMs appears in the Beeb’s sideways ROM sockets at number 2, 6, 10 and
14. With this method you could have 28 sideways ROMs installed in the machine, but of
course only 16 would be visible at any one time. It would be easy to write a kind of ‘Bank
Manager’ in the form of a sideways ROM. This would make possible commands such as;

*BANK 2

this being easier to remember than ?&FF30=2. Yet another possibility is to capture D0, D1
and D2 in three D-type latches (part of an HCT174) and use these to page in up to eight
banks of a chip such as an A29F040 (512kB). That’s 32 sideways ROMs in a single chip
(available as eight groups of four), plus eight banks of sideways RAM, plus (potentially)
four more ROMs programmed into a 27512 in SKT_B. Forty four ROMs in all. Then there’s
the 1MB M27C801 which could offer sixteen banks of four ROMs…

NB. On the RAMROM_B2 board A16 and A17 are tied to ground (the latter by means of a
link). The modification outlined above and below would involve bending up the pins on the
W29C020 before connecting them to the outputs of any logic devices. This alteration would
be at your own risk. Note also that the FLASH program as supplied assumes that the logic
state of both A16 and A17 is zero. If A16 and A17 are controlled by your own logic then the
program would need a few changes to take account of this.

Using the spare space in the W29C020 - method 2

This approach will allow you to have eight banks of flash memory (sockets 2, 3, 6, 7, 10, 11,
14 and 15) in addition to the 8 banks of sideways RAM (sockets 0, 1, 4, 5, 8, 9, 12 and 13).
The advantage is that you can potentially have the full 16 ROM sockets without the need for
an EPROM programmer and it’s much easier to implement than method 1 above. The main
disadvantages are that the rightmost socket (SKT_B) becomes unusable unless the
modification is undone. Additionally, if you accidentally corrupt or erase the W29C020 then
again the modification will probably have to be removed, at least temporarily, in order to
recover from the situation. The procedure (untested, I add) is as follows.

1) Remove the W29C020 from its socket and bend outwards pins 22 (Chip Enable) and

pin 30 (A17). Replace the chip in the socket, ensuring that pins 22 and 30 are not
touching anything.

2) Using two gates from a 74LS00 (for example), implement a dual input AND gate.
Feed one of the inputs from pin 22 of SKT_A (with the W29C020) and the other from
pin 20 of SKT_B.

3) Take the output from the above gate and attach it to pin 22 of the W29C020.
4) Connect pin 22 of SKT_A (which also goes into the AND gate) to pin 30 of the

W29C020.

This modification works by ensuring that CE on the W29C020 (pin 22) goes low when
either CE on SKT_A or SKT_B goes low. When CE on SKT_A goes low, A17 on the
W29C020 will be low too. This is in fact the default arrangement. To get A17 high, you will
need to set CE on SKT_B low (because the CE signals for the ROM sockets come from a 1
of 4 decoder). This in turn is achieved by writing either 3, 7, 11 or 15 to ROMSEL located
&FE30.

As with method 1, you will need to modify the FLASH program slightly. When writing the
command sequence to the W29C020 (see data sheet), A17 needs to be low. Therefore the
number written to ROMSEL must be 2, 6, 10 or 14. When writing the actual data to the
W29C020, A17 will need to be correctly set as described in the above paragraph.

Understanding the GAL16V8

The ROM/RAM board contains a single GAL16V8 to perform all of the required decoding.
It is an example of a simple PLD or Programmable Logic Device. Devices such as these can
often replace a dozen or so discrete logic parts, saving both on board space and cost. The
16V8 can have up to 16 inputs and 8 outputs, although not simultaneously as there are not
enough pins. The ‘V’ stands for versatile and is supposed to be descriptive of the OLMC
(Output Logic Macro Cell).

Anyone programming in 6502 assembly language will normally write their code in assembly
language and then use an assembler to produce the executable machine code. Few people
would choose to write machine code by poking numbers into memory. Similarly, although
the 16V8 can have several operating modes, it is normal to write the required logic equations
with nothing more than a text editor and then produce the fuse pattern for the PLD with
suitable software. Such software will automatically select the correct operating mode and
flag up illegal syntax (such as trying to define a pin to be some kind of logic output when
that same pin can be used as an input only).

Use of PLDs can help to keep commercial designs secure by making it difficult to fathom
what their functions are. The presence of a security bit prevents simple copying of the fuse
pattern. However, in this case the 16V8 has been used purely as a matter of design
convenience rather than to make the whole project into a closely guarded secret.

The precise syntax used to write the logic equations will vary from one software package to
another. Here, the "+" symbol implies the logical OR with the "*" being used for AND. A
preceding "/" acts a logical NOT. Writing an equation to produce the required result can be
very simple indeed, for example;

Z = A * B + C Z = (A AND B) OR C

Some equations may be easy enough to write down by inspection. Truth tables, Karnaugh
maps or other reduction techniques may be useful for more complex problems.

The Write Enable for the flash ROM (WE) is a function of the Output Enable signal on the
motherboard socket (OE_MB), the Read/Write signal on one of the flying leads (RW_FL)
and also the partial Write Protection link next to R1 (WP_PART). WP_PART will be high
when the link is removed and this must prevent WE on the flash ROM from going low.
Therefore;

WE = OE_MB + RW_FL + WP_PART

We could also have written;

/WE = /OE_MB * /RW_FL * /WP_PART

using DeMorgan's Law. The second equation tells us that WE on the flash ROM goes low
when the OE signal on the mother board is low AND a processor Write is occurring AND
the WP_PART link is in place (thus producing a logic 0 on the input to the GAL.). Of
course, the Chip Enable pin must also be low.

The flash ROM data sheet is very clear on one point. The Output Enable on the flash ROM
chip must remain high during a Write cycle, yet a glance at the waveforms on page 38 shows
that OE on the motherboard (OE_MB) is low during the second half of the 2MHz clock
period for both reads and writes. OE_MB cannot therefore be connected directly to the OE
pin on the flash ROM (pin 24) because this would inhibit the write. OE on the flash ROM
must be generated by the GAL;

OE_FLASH24 = OE_MB + /RW_FL

OE_FLASH24 is now always high whenever the CPU’s Read/Write signal is low.

The 128kB static RAM chip is the 32 pin SOIC surface mount IC on the left of the board. It
has two Chip Enable pins, one being active high and the other active low. Both must be in
the correct state in order to activate the chip, but in fact the active high CE is permanently
pulled to +5V. Thus, only the active low pin (22) is used.

The idea is that the 128kB RAM is activated whenever one of the leftmost two sockets on
the motherboard is selected, that is when either of the Chip Enable signals (pin 20 on the
socket) goes low. When this happens, the CE pin on the RAM chip must go low too.
Therefore;

/CE_RAM22 = /CE1 + /CE2

where CE1 and CE2 are the two Chip Enables from the motherboard. In words, CE on the
RAM chip goes low if CE1 goes low OR CE2 goes low. Strictly speaking, CE on the RAM
will also go low if both CE1 and CE2 are low simultaneously. However, CE1 and CE2 are
generated by a 2-to-4 line decoder so in practice this can never happen.

A15 and A14 on the RAM chip merely track the signals present on the green and yellow
flying leads (which come from the 4-bit latch on the motherboard). That is;

A15_RAM31 = A15_FL
A14_RAM3 = A14_FL

The most significant address line (A16) is determined directly by the state of the Chip
Enable on the leftmost motherboard socket. Hence;

A16_RAM2 = CE1

This means that when CE1 is low, A16 on the 128kB RAM will be low too. When CE1 goes
high then A16 will do so also. If both CE1 and CE2 are high - as they will be when one of
the two sockets on the right are active - then the state of A16 is irrelevant because the RAM
chip will not be enabled.

The Write Enable signal on the 128kB RAM is generated from the Output Enable OE_MB
on the motherboard sockets (OE is common to all four sockets), the R/W signal from the
CPU, the partial write protect link (WP_PART) and also A15 (A15_FL)

WE_RAM29 = OE_MB + RW_FL + WP_PART * A15_FL

This is the SAVEROM program written in BBC BASIC. When you have finished entering
the program type RUN. This trivial program helps to show just how useful the assembler
built into BBC BASIC really was. The assembler turns the assembly language section (lines
140 to 320) into machine code, and the CALL statement causes that code to be executed.

As a rule the program should be entered exactly as it appears below. Some parts are case
sensitive and be careful not to confuse similar characters (eg the letter 'O' with a zero).

 10REM > SAVEROM
 20PROCassemble
 30INPUT "Socket number "X%:X%=X% AND 15
 40CALL code
 50OSCLI("SAVE ROM"+STR$X%+" 3000+4000")
 60END
 70DEFPROCassemble
 80DIM code 100
 90FOR pass% = 0 TO 2 STEP 2
 100P%=code
 110src=&70:dest=&72
 120!src=&8000:!dest=&3000
 130[OPT pass%
 140LDA &F4 \Save current socket
 150PHA
 160STX &F4 \Activate chosen socket
 170STX &FE30
 180LDY #0 \For indirect indexed addressing
 190.loop
 200LDA (src),Y \Read from ROM space
 210STA (dest),Y \Write to RAM
 220INY \Increment offset
 230BNE loop
 240INC src+1
 250INC dest+1
 260LDA src+1
 270CMP #&C0 \Check for all done
 280BNE loop
 290PLA \Retrieve original ROM number
 300STA &F4 \Activate it
 310STA &FE30
 320RTS
 330]:NEXT
 340ENDPROC

 5 REM > LOADROM
 10MODE 7
 20PROCassemble
 30INPUT "Filename to load "f$
 40INPUT "Socket number (0-15) "X%
 50X%=X% AND 15
 60OSCLI("LOAD "+f$+" 3000")
 70?(&2A1+X%)=0:CALL A
 80INPUT "Perform reset (Y/N) ";
 90yn%=GET AND &DF
 100IF yn%=ASC"Y" THEN ?&FE4E=127:CALL !-4 ELSE PRINT"N"
 110END
 120:
 130DEFPROCassemble
 140DIM A 100
 150P%=A
 160src=&70:dest=&72
 170!src=&3000:!dest=&8000
 180[OPT 2
 190LDY #0
 200LDA &F4
 210PHA
 220STX &F4
 230STX &FE30
 240.loop
 250LDA (src),Y
 260STA (dest),Y
 270INY
 280BNE loop
 290INC src+1
 300INC dest+1
 310LDA dest+1
 320CMP #&C0
 330BNE loop
 340PLA
 350STA &F4
 360STA &FE30
 370RTS
 380]
 390ENDPROC

The LOADROM program will load ROM images from the current filing system into a bank
of sideways RAM. Observe the trick in line 100 of a simulated reset by writing 127 to
address &FE4E, then calling the 6502 processor reset vector with CALL !-4

 10REM COPYBAS
 20REM Copies BASIC to a S/W RAM socket
 30DIM buff% 260, code 100
 40count%=&80:buffptr%=&70
 50romptr%=&72:destrom%=&81
 60!buffptr%=buff%
 70!romptr%=&8000
 80PROCassemble
 90INPUT "ROM socket (0,1,4,5,8,9,12,13) "n%
 100?destrom%=n% AND 15
 110CALL code
 120END
 130:
 140DEFPROCassemble
 150FOR pass%=0 TO 2 STEP 2
 160P%=code
 170[OPT pass%
 180 LDX &F4
 190 LDA #64
 200 STA count%
 210 LDY #0
 220.mainloop
 230 JSR romsel \Select BASIC
 240.loop1
 250 LDA (romptr%),Y
 260 STA (buffptr%),Y
 270 INY
 280 BNE loop1
 290 LDA destrom%
 300 STA &F4:STA &FE30
 310.loop2
 320 LDA (buffptr%),Y
 330 STA (romptr%),Y
 340 INY
 350 BNE loop2
 360 INC romptr%+1
 370 DEC count%
 380 BNE mainloop
 390.romsel
 400 STX &F4:STX &FE30
 410 RTS
 420]
 430NEXT
 440ENDPROC

This is the FLASH program for programming the W29C020 in the machine. This is a fully
working version although the one supplied on the W29C020 itself or on the CD may have
had some slight tweaks.

The FLASH program is on the W29C020 in ROM Filing System format. It is also on the CD
as part of an SSD image (for use with the MMC system) and also as a text file listing.
Typing this program in by hand should be something of a last resort.

 10REM >FLASH
 20REM Programs the Winbond W29C020
 30IF FNsp THEN PRINT'"Please turn off 2nd processor":END
 40IF !&D000<>&A8086918 PRINT "Not a Model B":END
 50PROCinit
 60MODE7
 70PROCassemble
 80PROCwinbond:IF fail% END
 90file$="no data"
 100REPEAT
 110 CLS
 120 PRINT TAB(2,5)"S) Set ROM number ("STR$rom%")"
 130 PRINT TAB(2,6)"L) Load data to buffer ("file$")"
 140 PRINT TAB(2,7)"P) Program ROM "STR$rom%
 150 PRINT TAB(2,8)"E) Erase entire ROM"
 160 PRINT TAB(2,9)"X) Exit"
 170 PRINT TAB(2,10)"*) Star command"
 180 PRINT TAB(2,12)"Choice ?";
 190 REPEAT
 200 a%=GET:IF a%<>42 THEN a$=CHR$(a% AND &DF) ELSE a$="*"
 210 UNTIL INSTR("SLPEX*",a$)>0
 220 PRINT a$'
 230 IF a$="S" THEN PROCromnum
 240 IF a$="L" THEN PROCload
 250 IF a$="P" THEN PROCprogram
 260 IF a$="E" THEN PROCerase
 270 IF a$="X" THEN PROCreset
 280 IF a$="*" THEN PROCstar
 290UNTIL a$="X"
 300END
 310:
 320DEFPROCromnum:LOCAL J%,m%
 330PRINT "Enter ROM number ";
 340FOR J%=1 TO 4
 350 m%=rsock%(J%)
 360 IF m%<>0 THEN PRINT STR$m%" ";
 370NEXT
 380PRINT
 390INPUT k%:fail%=TRUE
 400FOR J%=1 TO 4
 410IF rsock%(J%)=k% THEN fail%=FALSE
 420NEXT
 430IF fail% THEN PRINT '"Illegal ROM socket":VDU7:PROCpak ELSE rom%=k%
 440ENDPROC
 450:
 460DEFPROCload:LOCAL f$,h%,s%
 470PRINT "Enter filename ";
 480INPUT f$:h%=OPENINf$
 490IF h%=0 OR LENf$>20 THEN PRINT "Invalid name":PROCpak:file$="no
data":ENDPROC
 500s%=EXT#h%:CLOSE#h%

 510IF s%>&4000 THEN PRINT "File too long":PROCpak:file$="no
data":ENDPROC
 520file$=f$
 530$oscli%="LOAD "+file$+" "+STR$~buff%
 540X%=oscli% AND 255:Y%=oscli% DIV 256
 550CALL &FFF7
 560s%=!((buff%?7)+buff%)
 570IF s%<>&29432800 AND ?buff%<>&C9 THEN PRINT '"Data may be invalid.
Warning only.":VDU 7:PROCpak
 580ENDPROC
 590:
 600DEFPROCprogram
 610IF file$="no data" THEN PRINT "Load data into buffer":VDU
7:PROCpak:ENDPROC
 620IF fsrom%=rom% THEN VDU7:PRINT"Warning"'"About to overwrite filing
system"
 630PROCconfirm:IF fail% THEN PRINT '"Aborted.":PROCpak:ENDPROC
 640IF fsrom%=rom% THEN *TAPE
 650?(&2A1+rom%)=0
 660!src%=buff%:!dest%=&8000
 670?r%=rom%
 680PRINT TAB(3,19)"Programming page of 128"
 690CALL program%
 700PRINT '" Verifying...";
 710!src%=buff%:!dest%=&8000
 720CALL verify%
 730VDU7:IF ?flag%=0 THEN PRINT ''"Fail":VDU 7 ELSE PRINT ''"Pass"
 740PROCpak
 750ENDPROC
 760:
 770DEFPROCerase
 780IF n%<4 THEN PRINT "Chip in use - cannot erase":PROCpak:ENDPROC
 790IF fsinflash% THEN VDU7:PRINT"Warning"'"About to overwrite filing
system"
 800PROCconfirm
 810IF fail% THEN PRINT '"Aborted.":PROCpak:ENDPROC
 820IF fsinflash% THEN *TAPE
 830?&2A3=0:?&2A7=0:?&2AB=0:?&2AF=0
 840CALL erase%
 850PRINT"Done.":PROCpak:ENDPROC
 860:
 870DEFPROCstar
 880INPUT '"*"com$
 890IF LENcom$>30 THEN PRINT"Too long":PROCpak:ENDPROC
 900$oscli%=com$
 910Y%=oscli% DIV 256:X%=oscli% AND 255
 920CALL &FFF7:PROCpak:ENDPROC
 930:
 940DEFPROCconfirm:LOCAL a$
 950PRINT'"Confirm programming/erasure ";
 960INPUT a$
 970fail%=a$<>"YES"
 980ENDPROC
 990:
 1000DEFPROCpak:LOCAL G%
 1010PRINT 'pak$;:G%=GET
 1020ENDPROC
 1030:
 1040DEFPROCreset
 1050PRINT"Perform reset? (Y/N)";:X%=GET
 1060IF X%=ASC"y" OR X%=ASC"Y" THEN ?&FE4E=127:CALL !-4 ELSE PRINT

 1070ENDPROC
 1080:
 1090DEFPROCvalidroms:LOCAL m%,j%
 1100n%=0
 1110FOR m%=1 TO 4
 1120j%=4*(m%-1)+2
 1130IF j%<>?&F4 THEN n%=n%+1:rsock%(m%)=j%
 1140NEXT
 1150ENDPROC
 1160:
 1170DEFPROCwinbond:CALL id%
 1180fail%=(?flag%=0)
 1190IF fail% THEN PRINT"Check chip and/or links"
 1200ENDPROC
 1210:
 1220DEFFNsp
 1230A%=234:X%=0:Y%=255
 1240K%=(USR&FFF4 AND &FFFF) DIV 256
 1250=K%>0
 1260DEFFNmodelB
 1270IF !&D000=&A8086918 THEN =TRUE ELSE =FALSE
 1280:
 1290DEFPROCassemble
 1300FOR J%=0 TO 2 STEP 2
 1310P%=code%
 1320[OPT J%
 1330.id%
 1340 LDA &F4
 1350 PHA
 1360 SEI
 1370 LDX #&80
 1380 JSR sequence1
 1390 LDX #&60
 1400 JSR sequence1
 1410 LDA #FNlatch(&0000)
 1420 JSR romsel
 1430 LDX #10 \Short delay
 1440.delay
 1450 DEX
 1460 BNE delay
 1470 LDA FNaddr(&0000)
 1480 CMP #&DA \Winbond?
 1490 BNE storeX \X=0
 1500 LDA FNaddr(&0001)
 1510 CMP #&45 \Device type
 1520 BNE storeX
 1530 DEX \X=255
 1540.storeX
 1550 STX flag%
 1560 LDX #&F0
 1570 JSR sequence1
 1580 CLI
 1590 PLA \Original ROM
 1600 JMP romsel
 1610:
 1620.erase%
 1630 LDA &F4
 1640 PHA:SEI
 1650 LDX #&80
 1660 JSR sequence1
 1670 LDX #&10

 1680 JSR sequence1
 1690 CLI
 1700 PLA
 1710 JMP romsel
 1720:
 1730.program%
 1740 LDA &F4
 1750 PHA
 1760 LDA #1
 1770 STA pagenum%
 1780 LDA r%
 1790 JSR romsel
 1800.progloop
 1810 SEI
 1820 LDX #&A0
 1830 JSR sequence1
 1840 LDA r%
 1850 JSR romsel
 1860 LDY #0 \Initial offset
 1870.write
 1880 LDA (src%),Y
 1890 STA (dest%),Y
 1900 INY
 1910 BPL write \End when Y=128
 1920 CLI
 1930 TAY \Last byte stored
 1940 LDA #31 \PRINT TAB(20,19)
 1950 JSR osascii
 1960 LDA #20
 1970 JSR osascii
 1980 LDA #19
 1990 JSR osascii
 2000 LDA pagenum%
 2010 LDX #ASC"0"
 2020 CMP #100
 2030 BCC cc1
 2040 INX
 2050 SBC #100
 2060.cc1
 2070 PHA
 2080 TXA
 2090 JSR osascii \100s
 2100 PLA
 2110 SEC
 2120 LDX #ASC"0"
 2130.lp10
 2140 SBC #10
 2150 BCC cc2
 2160 INX
 2170 BCS lp10
 2180.cc2
 2190 ADC #10+ASC"0"
 2200 PHA
 2210 TXA
 2220 JSR osascii \10s
 2230 PLA
 2240 JSR osascii \1s
 2250:
 2260 TYA:TAX \Save last byte
 2270 LDY #127 \End of page
 2280.busy

 2290 TXA \Toggle check
 2300 EOR (dest%),Y
 2310 BMI busy
 2320 LDA src% \Update pointers
 2330 EOR #128
 2340 STA src%
 2350 BMI cc3
 2360 INC src%+1
 2370.cc3
 2380 LDA dest%
 2390 EOR #128
 2400 STA dest%
 2410 BMI cc4
 2420 INC dest%+1
 2430.cc4
 2440 INC pagenum%
 2450 LDA pagenum%
 2460 CMP #129
 2470 BNE progloop
 2480 PLA
 2490 BPL romsel \BRA
 2500:
 2510.verify%
 2520 LDA &F4
 2530 PHA
 2540 LDA r%
 2550 JSR romsel
 2560 LDX #0 \Assume fail
 2570 LDY #0
 2580.verloop
 2590 LDA (src%),Y
 2600 CMP (dest%),Y
 2610 BNE store
 2620 INY
 2630 BNE verloop
 2640 INC dest%+1
 2650 INC src%+1
 2660 LDA dest%+1
 2670 CMP #&C0
 2680 BNE verloop
 2690 DEX \=&FF, pass
 2700.store
 2710 STX flag%
 2720 PLA
 2730 BPL romsel \BRA
 2740:
 2750.sequence1
 2760 LDA #FNlatch(&5555)
 2770 JSR romsel
 2780 LDA #&AA
 2790 STA FNaddr(&5555)
 2800 LDA #FNlatch(&2AAA)
 2810 JSR romsel
 2820 LDA #&55
 2830 STA FNaddr(&2AAA)
 2840 LDA #FNlatch(&5555)
 2850 JSR romsel
 2860 STX FNaddr(&5555)
 2870 RTS
 2880.romsel
 2890 STA &F4

 2900 STA &FE30
 2910 RTS
 2920]:NEXT
 2930ENDPROC
 2940DEFFNlatch(a%):LOCAL k%
 2950=((a% DIV 4096) AND &C) OR 2
 2960DEFFNaddr(add%)
 2970=(add% AND &3FFF) OR &8000
 2980:
 2990DEFPROCinit
 3000DIM rsock%(4),buff% 16390,oscli% 35,code% 300
 3010flag%=&80:src%=&70:dest%=&72:pagenum%=&75
 3020r%=&81:osascii=&FFE3
 3030pak$="Press a key"
 3040IF ?&213=&FF THEN fsrom%=?&DBC ELSE fsrom%=-1
 3050fsinflash%=((fsrom% AND 3)=2)
 3060PROCvalidroms:rom%=rsock%(1)
 3070ENDPROC

IFEL, 21 Glenfield Road, Glenholt PLYMOUTH PL6 7LL (01752) 777106
Email: ifelsales@tiscali.co.uk

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJDFFile false

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /Description <<

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

